Effects of W on microstructure and high-temperature oxidation behavior of ferritic stainless steel weldment

2017 ◽  
Vol 31 (16-19) ◽  
pp. 1744042
Author(s):  
Yijie Ji ◽  
Yuye Xie ◽  
Shuangchun Zhu ◽  
Biao Yan

With the promotion of fuel economy policy and automobile lightweight concept, ferritic stainless steels applied in vehicles’ exhaust hot end systems have been developed. This paper simulated the high-temperature environment at which the automobile exhaust system serviced in for high-temperature corrosion. Kinetic curves were conducted in isothermal environments at 1000[Formula: see text]C. X-ray diffraction, scanning electron microscope and energy dispersive spectrometer were used to study the oxidation behavior of ferritic stainless steels and the effects of tungsten (W) addition. The results show that, with increasing oxidation time, the rate of weight gains increase and the main failure is spalling of surface oxide layer. The addition of W has a complicated effect on the oxidation behavior of ferritic stainless steel weldment.

MRS Advances ◽  
2016 ◽  
Vol 1 (35) ◽  
pp. 2471-2476 ◽  
Author(s):  
KkochNim Oh ◽  
KwangSup Eom ◽  
Zhiyuan Liang ◽  
Preet M. Singh

ABSTRACTOxidation behavior of alumina forming ferritic stainless steel (FeCrAl type stainless steels) grades APM and APMT, which are candidate alloys for fuel cladding, was studied using thermogravimetric analysis under dry air condition, and compared to that of ZIRLO®. In addition to the dry air condition, we also studied the high temperature oxidation behavior of APM and APMT under 100% steam condition in order to compare the effect of environment on the oxidation behavior of these alloys. APM and APMT showed an excellent oxidation resistance at high temperatures compared to ZIRLO® under dry air condition due to a stable Al2O3 oxide scale formed at the surface. Under steam condition, the oxidation rate of APM and APMT was found to be higher compared to that under the dry air condition.


Author(s):  
Younggi Lee ◽  
Gyeongcheol Lee ◽  
Jaeseong Kim ◽  
Boyoung Lee

Ferritic stainless steels have excellent stress corrosion resistance and a low coefficient of thermal expansion compared to austenitic stainless steels. Ferritic stainless steels of the 400 series have been available for automotive exhaust systems, heat exchangers, radiators etc. in various industries. Automotive exhaust manifolds especially require good heat resistance because the typical operation temperature(800°C) of the exhaust system is exposed to during engine operation. In this study, the effects of high temperature(800°C) characteristics on the mechanical and microstructure properties were investigated for lap joint of ferritic stainless steel(STS 429) mainly used as the automotive exhaust manifolds. The microstructure of lap joint was characterized by optical microscopy(OM), scanning electron microscopy(SEM) and X-ray diffraction(XRD). The mechanical property of lap joint was evaluated by tensile test. The tensile test results show that a significant decrease in ultimate tensile strength(between 82 and 85%) was observed for aged STS 429 when tested at the evaluated temperature(800°C). The tensile strength was significantly influenced by growth of grain in the heat affected zone(HAZ). The XRD results show that chromium carbide and chromium nitride phases such as Cr23C6, Cr7C3, Cr2N and TiN were precipitated in the heat affected zone(HAZ).


Alloy Digest ◽  
2006 ◽  
Vol 55 (6) ◽  

Abstract AK Steel 441 has good high-temperature strength, an equiaxed microstructure, and good high-temperature oxidation resistance. The alloy is a niobium-bearing ferritic stainless steel. This datasheet provides information on composition, hardness, and tensile properties as well as deformation. It also includes information on high temperature performance and corrosion resistance as well as forming and joining. Filing Code: SS-965. Producer or source: AK Steel.


Sign in / Sign up

Export Citation Format

Share Document