Stochastic resonance in the majority vote model on regular and small-world lattices

2017 ◽  
Vol 31 (29) ◽  
pp. 1750214
Author(s):  
A. Krawiecki

The majority vote model with two states on regular and small-world networks is considered under the influence of periodic driving. Monte Carlo simulations show that the time-dependent magnetization, playing the role of the output signal, exhibits maximum periodicity at nonzero values of the internal noise parameter [Formula: see text], which is manifested as the occurrence of the maximum of the spectral power amplification; the location of the maximum depends in a nontrivial way on the amplitude and frequency of the periodic driving as well as on the network topology. This indicates the appearance of stochastic resonance in the system as a function of the intensity of the internal noise. Besides, for low frequencies and for certain narrow ranges of the amplitudes of the periodic driving double maxima of the spectral power amplification as a function of [Formula: see text] occur, i.e., stochastic multiresonance appears. The above-mentioned results quantitatively agree with those obtained from numerical simulations of the mean-field equations for the time-dependent magnetization. In contrast, analytic solutions for the spectral power amplification obtained from the latter equations using the linear response approximation deviate significanlty from the numerical results since the effect of the periodic driving on the system is not small even for vanishing amplitude.

2003 ◽  
Vol 67 (2) ◽  
Author(s):  
Paulo R. A. Campos ◽  
Viviane M. de Oliveira ◽  
F. G. Brady Moreira
Keyword(s):  

2018 ◽  
Vol 29 (07) ◽  
pp. 1850061
Author(s):  
R. S. C. Brenda ◽  
F. W. S. Lima

We investigate the critical properties of the nonequilibrium majority-vote model in two-dimensions on directed small-world lattice with quenched connectivity disorder. The disordered system is studied through Monte Carlo simulations: the critical noise ([Formula: see text]), as well as the critical exponents [Formula: see text], [Formula: see text], and [Formula: see text] for several values of the rewiring probability [Formula: see text]. We find that this disordered system does not belong to the same universality class as the regular two-dimensional ferromagnetic model. The majority-vote model on directed small-world lattices presents in fact a second-order phase transition with new critical exponents which do not depend on [Formula: see text] ([Formula: see text]), but agree with the exponents of the equilibrium Ising model on directed small-world Voronoi–Delaunay random lattices.


2002 ◽  
Vol 02 (04) ◽  
pp. 463-506 ◽  
Author(s):  
P. IMKELLER ◽  
I. PAVLYUKEVICH

We provide a mathematical underpinning of the physically widely known phenomenon of stochastic resonance, i.e. the optimal noise-induced increase of a dynamical system's sensitivity and ability to amplify small periodic signals. The effect was first discovered in energy-balance models designed for a qualitative understanding of global glacial cycles. More recently, stochastic resonance has been rediscovered in more subtle and realistic simulations interpreting paleoclimatic data: the Dansgaard–Oeschger and Heinrich events. The underlying mathematical model is a diffusion in a periodically changing potential landscape with large forcing period. We study optimal tuning of the diffusion trajectories with the deterministic input forcing by means of the spectral power amplification measure. Our results contain a surprise: due to small fluctuations in the potential valley bottoms the diffusion — contrary to physical folklore — does not show tuning patterns corresponding to continuous time Markov chains which describe the reduced motion on the metastable states. This discrepancy can only be avoided for more robust notions of tuning, e.g. spectral amplification after elimination of the small fluctuations.


Sign in / Sign up

Export Citation Format

Share Document