THE CHERN-SIMONS-LANDAU-GINZBURG THEORY OF THE FRACTIONAL QUANTUM HALL EFFECT

1992 ◽  
Vol 06 (05n06) ◽  
pp. 803-804 ◽  
Author(s):  
Shou Cheng Zhang

This paper[1] gives a systematic review of a field theoretical approach to the fractional quantum Hall effect (FQHE) that has been developed in the past few years[2, 3]. We first illustrate some simple physical ideas to motivate such an approach and then present a systematic derivation of the Chern-Simons-Landau-Ginzburg (CSLG) action for the FQHE, starting from the microscopic Hamiltonian. It is demonstrated that all the phenomenological aspects of the FQHE can be derived from the mean field solution and the small fluctuations of the CSLG action. Although this formalism is logically independent of Laughlin’s wave function approach, their physical consequences are equivalent. In particular, it is shown that the Laughlin’s wave function can be ”derived” from the CSLG theory under reasonable approximations. The CSLG theory demonstrates a deep connection between the phenomena of superfluidity and the FQHE, and can provide a simple and direct formalism to address many new macroscopic phenomena of the FQHE.

1992 ◽  
Vol 06 (01) ◽  
pp. 25-58 ◽  
Author(s):  
SHOU CHENG ZHANG

This paper gives a systematic review of a field theoretical approach to the fractional quantum Hall effect (FQHE) that has been developed in the past few years. We first illustrate some simple physical ideas to motivate such an approach and then present a systematic derivation of the Chern–Simons–Landau–Ginzburg (CSLG) action for the FQHE, starting from the microscopic Hamiltonian. It is demonstrated that all the phenomenological aspects of the FQHE can be derived from the mean field solution and the small fluctuations of the CSLG action. Although this formalism is logically independent of Laughlin's wave function approach, their physical consequences are equivalent. The CSLG theory demonstrates a deep connection between the phenomena of superfluidity and the FQHE, and can provide a simple and direct formalism to address many new macroscopic phenomena of the FQHE.


2021 ◽  
Vol 10 (4) ◽  
Author(s):  
Ajit Coimbatore Balram

Fascinating structures have arisen from the study of the fractional quantum Hall effect (FQHE) at the even denominator fraction of 5/25/2. We consider the FQHE at another even denominator fraction, namely \nu=2+3/8ν=2+3/8, where a well-developed and quantized Hall plateau has been observed in experiments. We examine the non-Abelian state described by the ``\bar{3}\bar{2}^{2}1^{4}3‾2‾214" parton wave function and numerically demonstrate it to be a feasible candidate for the ground state at \nu=2+3/8ν=2+3/8. We make predictions for experimentally measurable properties of the \bar{3}\bar{2}^{2}1^{4}3‾2‾214 state that can reveal its underlying topological structure.


1993 ◽  
Vol 07 (14) ◽  
pp. 2655-2665 ◽  
Author(s):  
DINGPING LI

One kind of hierarchical wave functions of Fractional Quantum Hall Effect on the torus is constructed. We find that the wave functions are closely related to the wave functions of generalized Abelian Chern-Simons theory.


1992 ◽  
Vol 07 (07) ◽  
pp. 611-617 ◽  
Author(s):  
A.A. OVCHINNIKOV

We prove the non-renormalization theorem resulting in the exact cancellation of Chern-Simons term (and superconductivity) in systems of both free and interacting anyons with the statistical parameter 1/N. The theorem is used to prove the quantization of transverse conductance in the proposed second-quantized fermionic description of fractional quantum Hall effect.


Sign in / Sign up

Export Citation Format

Share Document