MODELING 3D FLUID SLOSHING USING LEVEL SET METHOD

2005 ◽  
Vol 19 (28n29) ◽  
pp. 1743-1746
Author(s):  
HANBIN GU ◽  
YANBAO LI ◽  
PENGZHI LIN

A three-dimension numerical wave model (3DWAVE) has been developed to simulate free surface flows. The model solves Navier-Stokes equations for two-phase flows of air and water. The level set method is employed to track water surfaces. The model is tested for water sloshing in a 3-D confined tank. The relative error in the mass and total energy computation is less than 1%. Excellent agreements between numerical results and analytical solution are obtained for free surface calculation. The nonlinearity in the 3-D fluid sloshing is analyzed. These have laid a foundation on research of breaking waves.

2016 ◽  
Vol 136 ◽  
pp. 212-227 ◽  
Author(s):  
J.M. Cubos-Ramírez ◽  
J. Ramírez-Cruz ◽  
M. Salinas-Vázquez ◽  
W. Vicente-Rodríguez ◽  
E. Martinez-Espinosa ◽  
...  

Author(s):  
Pablo Go´mez ◽  
Julio Herna´ndez ◽  
Joaqui´n Lo´pez ◽  
Fe´lix Faura

A numerical study of the initial stages of wave breaking processes in shallow water is presented. The waves considered are assumed to be generated by moving a piston in a two-dimensional channel, and may appear, for example, in the injection chamber of a high-pressure die casting machine under operating conditions far from the optimal. A numerical model based on a finite-difference discretization of the Navier-Stokes equations in a Cartesian grid and a second-order approximate projection method has been developed and used to carry out the simulations. The evolution of the free surface is described using a level set method, with a reinitialization procedure of the level set function which uses a local grid refinement near the free surface. The ability of different algorithms to improve mass conservation in the reinitialization step of the level set function has been tested in a time-reversed single vortex flow. The results for the breaking wave profiles show the flow characteristics after the impact of the first plunging jet onto the wave’s forward face and during the subsequent splash-up.


2004 ◽  
Vol 126 (4) ◽  
pp. 578-585 ◽  
Author(s):  
Hiroyuki Takahira ◽  
Tomonori Horiuchi ◽  
Sanjoy Banerjee

For the present study, we developed a three-dimensional numerical method based on the level set method that is applicable to two-phase systems with high-density ratio. The present solver for the Navier-Stokes equations was based on the projection method with a non-staggered grid. We improved the treatment of the convection terms and the interpolation method that was used to obtain the intermediate volume flux defined on the cell faces. We also improved the solver for the pressure Poisson equations and the reinitialization procedure of the level set function. It was shown that the present solver worked very well even for a density ratio of the two fluids of 1:1000. We simulated the coalescence of two rising bubbles under gravity, and a gas bubble bursting at a free surface to evaluate mass conservation for the present method. It was also shown that the volume conservation (i.e., mass conservation) of bubbles was very good even after bubble coalescence.


2013 ◽  
Author(s):  
Gabriel Reliquet ◽  
Aurélien Drouet ◽  
Pierre-Emmanuel Guillerm ◽  
Erwan Jacquin ◽  
Lionel Gentaz ◽  
...  

The purpose of this paper is to present combination of the SWENSE (Spectral Wave Explicit Navier-Stokes Equations – [1]) method — an original method to treat fully nonlinear wave-body interactions — and a free surface RANSE (Reynolds Averaged Navier-Stokes Equations) solver using a single-phase Level Set method to capture the interface. The idea is to be able to simulate wave-body interactions under viscous flow theory with strong deformations of the interface (wave breaking in the vicinity of the body, green water on ship decks…), while keeping the advantages of the SWENSE scheme. The SWENSE approach is based on a physical decomposition by combining incident waves described by a nonlinear spectral scheme based on potential flow theory and an adapted Navier-Stokes solver where only the diffracted part of the flow is solved, incident flow parameters seen as forcing terms. In the single-phase Level Set method [2, 3], the air phase is neglected. Thus, only the liquid phase is solved considering a fluid with uniform properties. The location of the free surface is determined by a Level Set function initialised as the signed distance. The accuracy of simulation depends essentially on the pressure scheme used to impose free surface dynamic boundary condition. Comparisons of numerical results with experimental and numerical data for US navy combatant DTMB 5415 in calm water and in head waves are presented.


Sign in / Sign up

Export Citation Format

Share Document