ADAPTIVE SYNCHRONIZATION FOR UNKNOWN STOCHASTIC CHAOTIC NEURAL NETWORKS WITH MIXED TIME-DELAYS BY OUTPUT COUPLING

2008 ◽  
Vol 22 (24) ◽  
pp. 2391-2409 ◽  
Author(s):  
YANG TANG ◽  
JIAN-AN FANG ◽  
SUOJUN LU ◽  
QINGYING MIAO

This paper is concerned with the synchronization problem for a class of stochastic neural networks with unknown parameters and mixed time-delays via output coupling. The mixed time-delays comprise the time-varying delay and distributed delay, and the neural networks are subjected to stochastic disturbances described in terms of a Brownian motion. Firstly, we use Lyapunov functions to establish general theoretical conditions for designing the output coupling matrix. Secondly, by using the adaptive feedback technique, a simple, analytical and rigorous approach is proposed to synchronize the stochastic neural networks with unknown parameters and mixed time-delays. Finally, numerical simulation results are given to show the effectiveness of the proposed method.

Author(s):  
Jian-an Fang ◽  
Yang Tang

Neural networks (NNs) have been useful in many fields, such as pattern recognition, image processing etc. Recently, synchronization of chaotic neural networks (CNNs) has drawn increasing attention due to the high security of neural networks. In this chapter, the problem of synchronization and parameter identification for a class of chaotic neural networks with stochastic perturbation via state and output coupling, which involve both the discrete and distributed time-varying delays has been investigated. Using adaptive feedback techniques, several sufficient conditions have been derived to ensure the synchronization of stochastic chaotic neural networks. Moreover, all the connection weight matrices can be estimated while the lag synchronization and complete synchronization is achieved in mean square at the same time. The corresponding simulation results are given to show the effectiveness of the proposed method.


2010 ◽  
Vol 88 (12) ◽  
pp. 885-898 ◽  
Author(s):  
R. Raja ◽  
R. Sakthivel ◽  
S. Marshal Anthoni

This paper investigates the stability issues for a class of discrete-time stochastic neural networks with mixed time delays and impulsive effects. By constructing a new Lyapunov–Krasovskii functional and combining with the linear matrix inequality (LMI) approach, a novel set of sufficient conditions are derived to ensure the global asymptotic stability of the equilibrium point for the addressed discrete-time neural networks. Then the result is extended to address the problem of robust stability of uncertain discrete-time stochastic neural networks with impulsive effects. One important feature in this paper is that the stability of the equilibrium point is proved under mild conditions on the activation functions, and it is not required to be differentiable or strictly monotonic. In addition, two numerical examples are provided to show the effectiveness of the proposed method, while being less conservative.


Author(s):  
Abdujelil Abdurahman ◽  
Haijun Jiang

Projective synchronization (PS) is a type of chaos synchronization where the states of slave system are scaled replicas of the states of master system. This paper studies the asymptotic projective synchronization (APS) between master–slave chaotic neural networks (NNs) with mixed time-delays and unmatched coefficients. Based on useful inequality techniques and constructing a suitable Lyapunov functional, some simple criteria are derived to ensure the APS of considered networks via designing a novel adaptive feedback controller. In addition, a numerical example and its MATLAB simulations are provided to check the feasibility of the obtained results. The main innovation of our work is that we dealt with the APS problem between two different chaotic NNs, while most of the existing works only concerned with the PS of chaotic systems with the same topologies. In addition, compared with the controllers introduced in the existing papers, the designed controller in this paper does not require any knowledge about the activation functions, which can be seen as another novelty of the paper.


2014 ◽  
Vol 2014 ◽  
pp. 1-17
Author(s):  
Yingwei Li ◽  
Xueqing Guo

The exponential synchronization issue for stochastic neural networks (SNNs) with mixed time delays and Markovian jump parameters using sampled-data controller is investigated. Based on a novel Lyapunov-Krasovskii functional, stochastic analysis theory, and linear matrix inequality (LMI) approach, we derived some novel sufficient conditions that guarantee that the master systems exponentially synchronize with the slave systems. The design method of the desired sampled-data controller is also proposed. To reflect the most dynamical behaviors of the system, both Markovian jump parameters and stochastic disturbance are considered, where stochastic disturbances are given in the form of a Brownian motion. The results obtained in this paper are a little conservative comparing the previous results in the literature. Finally, two numerical examples are given to illustrate the effectiveness of the proposed methods.


Sign in / Sign up

Export Citation Format

Share Document