CRITICAL ACTIVATION PARAMETERS FOR LaFeAsO-BASED SUPERCONDUCTORS

2011 ◽  
Vol 25 (30) ◽  
pp. 2299-2306
Author(s):  
ZOTIN KWANG-HUA CHU

The occurrence of high-Tc superconductivity in the iron pnictides shares a similar amorphous characteristic with that of high-Tc superconducting cuprates. Here we show that nearly frictionless (electric-field-driven) transport of condensed electrons in amorphous superconductors could happen after using the Eyring's transition-rate approach which has been successfully adopted to study the critical transport of other superconductors as well as supersolid helium in very low temperature environment. The critical temperatures related to the nearly frictionless transport of electrons were found to be directly relevant to the superconducting temperature of high-temperature superconductors (like La [ O 1-x F x] FeAs (x = 0.11-0.12)) after selecting specific activation energies and activation volumes.

MRS Bulletin ◽  
1990 ◽  
Vol 15 (6) ◽  
pp. 60-67 ◽  
Author(s):  
M. Brian Maple

Since the discovery of high temperature superconductivity in layered copper-oxide compounds in the latter part of 1986, an enormous amount of research has been carried out on these remarkable materials. Prior to 1989, the prevailing view was that the charge carriers responsible for superconductivity in these materials were holes that move through conducting CuO2 planes. The CuO2 planes are the basic building blocks of the crystal structures of all the presently known oxides with superconducting critical temperatures Tc greater than ~30 K. Recently, new superconducting materials have been discovered in Japan and the United States in which the charge carriers involved in the superconductivity appear to be electrons, rather than holes, that reside within the conducting CuO2 planes. These findings could have important implications regarding viable theories of high temperature superconductivity as well as strategies for finding new high temperature superconductors.The new electron-doped materials have the chemical formula Ln2-xMxCuO4-y and exhibit superconductivity with superconducting critical temperatures Tc as high as ~25 K for x ≍ 0.15 and y ≍ 0.02. Superconductivity has been discovered for M = Ce and Ln = Pr, Nd, Sm, and Eu, and for M = Th and Ln = Pr, Nd, and Sm. A related compound with the identical crystal structure, Nd2CuO4-x-y Fx, has also been found to display superconductivity withTc ≍ 25 K. Recently, it has been observed that superconductivity with Tc ≍ 25 K can even be induced in nonsuperconducting Nd2-xCexCuO4-y compounds by substituting Ga or In for Cu. Thus, it appears that the CuO2 planes can be doped with electrons, rendering the Ln2CuO4-y parent compounds metallic and superconducting, by substituting electron donor elements at sites within, as well as outside, the CuO2 planes; i.e., by substituting (1) Ce4+ or Th4+ ions for Ln3+ ions; (2) F1- ions for O2- ions; and (3) Ga3+ or In3+ ions for Cu2+ ions.


Author(s):  
M.R. Koblischka

This article describes the fabrication of high-temperature superconducting nanowires and their characterization by magnetic and electric transport measurements. In the literature, nanowires of high-temperature superconductors (HTSc) are obtained by means of lithography, using thin film material as a base. However, there are two main problems with this approach: first, the substrate often influences the HTSc nanowire, and second, only electric transport measurements can be performed. This article explains how nanowires and nanobelts of high-temperature superconducting cuprates can be prepared by the template method and by electrospinning. It also considers the possibilities for employing substrate-free HTSc nanowires as building blocks to realize new, nanoporous bulk superconducting materials for a variety of applications.


1987 ◽  
Vol 99 ◽  
Author(s):  
J. R. Tesmer ◽  
C. J. Maggiore ◽  
M. Nastasi ◽  
S-W. Cheong ◽  
C-M. Dick

ABSTRACTThe effects of implanted fluorine on the resistivity of high temperature superconductors and its diffusion within the superconductors have been studied in an attempt to duplicate a recent report of enhanced critical temperatures. Implanted fluorine was found to have no effect on the critical temperature and, upon heating, the fluorine diffuses out of the near surface.


Sign in / Sign up

Export Citation Format

Share Document