A Bayesian network model for predicting type 2 diabetes risk based on electronic health records

2017 ◽  
Vol 31 (19-21) ◽  
pp. 1740055 ◽  
Author(s):  
Jiang Xie ◽  
Yan Liu ◽  
Xu Zeng ◽  
Wu Zhang ◽  
Zhen Mei

An extensive, in-depth study of diabetes risk factors (DBRF) is of crucial importance to prevent (or reduce) the chance of suffering from type 2 diabetes (T2D). Accumulation of electronic health records (EHRs) makes it possible to build nonlinear relationships between risk factors and diabetes. However, the current DBRF researches mainly focus on qualitative analyses, and the inconformity of physical examination items makes the risk factors likely to be lost, which drives us to study the novel machine learning approach for risk model development. In this paper, we use Bayesian networks (BNs) to analyze the relationship between physical examination information and T2D, and to quantify the link between risk factors and T2D. Furthermore, with the quantitative analyses of DBRF, we adopt EHR and propose a machine learning approach based on BNs to predict the risk of T2D. The experiments demonstrate that our approach can lead to better predictive performance than the classical risk model.

Diabetes ◽  
2020 ◽  
Vol 69 (Supplement 1) ◽  
pp. 1552-P
Author(s):  
KAZUYA FUJIHARA ◽  
MAYUKO H. YAMADA ◽  
YASUHIRO MATSUBAYASHI ◽  
MASAHIKO YAMAMOTO ◽  
TOSHIHIRO IIZUKA ◽  
...  

2016 ◽  
Vol 11 (4) ◽  
pp. 791-799 ◽  
Author(s):  
Rina Kagawa ◽  
Yoshimasa Kawazoe ◽  
Yusuke Ida ◽  
Emiko Shinohara ◽  
Katsuya Tanaka ◽  
...  

Background: Phenotyping is an automated technique that can be used to distinguish patients based on electronic health records. To improve the quality of medical care and advance type 2 diabetes mellitus (T2DM) research, the demand for T2DM phenotyping has been increasing. Some existing phenotyping algorithms are not sufficiently accurate for screening or identifying clinical research subjects. Objective: We propose a practical phenotyping framework using both expert knowledge and a machine learning approach to develop 2 phenotyping algorithms: one is for screening; the other is for identifying research subjects. Methods: We employ expert knowledge as rules to exclude obvious control patients and machine learning to increase accuracy for complicated patients. We developed phenotyping algorithms on the basis of our framework and performed binary classification to determine whether a patient has T2DM. To facilitate development of practical phenotyping algorithms, this study introduces new evaluation metrics: area under the precision-sensitivity curve (AUPS) with a high sensitivity and AUPS with a high positive predictive value. Results: The proposed phenotyping algorithms based on our framework show higher performance than baseline algorithms. Our proposed framework can be used to develop 2 types of phenotyping algorithms depending on the tuning approach: one for screening, the other for identifying research subjects. Conclusions: We develop a novel phenotyping framework that can be easily implemented on the basis of proper evaluation metrics, which are in accordance with users’ objectives. The phenotyping algorithms based on our framework are useful for extraction of T2DM patients in retrospective studies.


Author(s):  
Muhammad Younus ◽  
Md Tahsir Ahmed Munna ◽  
Mirza Mohtashim Alam ◽  
Shaikh Muhammad Allayear ◽  
Sheikh Joly Ferdous Ara

2021 ◽  
Vol 16 (1) ◽  
Author(s):  
Lele Yang ◽  
Yan Xue ◽  
Jinchao Wei ◽  
Qi Dai ◽  
Peng Li

Abstract Background Jinqi Jiangtang (JQJT) has been widely used in clinical practice to prevent and treat type 2 diabetes. However, little research has been done to identify and classify its quality markers (Q-markers) associated with anti-diabetes bioactivity. In this study, a strategy combining mass spectrometry-based untargeted metabolomics with backpropagation artificial neural network (BP-ANN)-based machine learning approach was proposed to screen Q-markers from JQJT preparation. Methods This strategy mainly involved chemical profiling of herbal medicines, statistic processing of metabolomic datasets, detection of different anti-diabetes activities and establishment of BP-ANN model. The chemical features of seventy-eight batches of JQJT extracts were first profiled by using the untargeted UPLC-LTQ-Orbitrap metabolomic approach. The chemical features obtained which were associated with different anti-diabetes activities based on three modes of action were normalized, ranked, and then pre-selected by using ReliefF feature selection. BP-ANN model was then established and optimized to screen Q-markers based on mean impact value (MIV). Results Optimized BP-ANN architecture was established with high accuracy of R > 0.9983 and relative low error of MSE < 0.0014, which showed better performance than that of partial least square (PLS) model (R2 < 0.5). Meanwhile, the BP-ANN model was subsequently applied to further screen potential bioactive components from the pre-selected chemical features by calculating their MIVs. With this machine learning model, 10 potential Q-markers with bioactivity were discovered from JQJT. The tested anti-diabetes bioactivities of 78 batches of JQJT could be accurately predicted. Conclusions This proposed artificial intelligence approach is desirable for quick and easy identification of Q-markers with bioactivity from JQJT preparation.


2020 ◽  
Author(s):  
Lele Yang ◽  
Yan Xue ◽  
Jinchao Wei ◽  
Qi Dai ◽  
Peng Li

Abstract Background: Jinqi Jiangtang (JQJT) has been widely used in clinical practice to prevent and treat type 2 diabetes. However, little was known about its quality markers (Q-markers) associated with anti-diabetes bioactivity. In this study, a strategy combining mass spectrometry-based untargeted metabolomics with backpropagation artificial neural network (BP-ANN)-based machine learning approach was proposed to screen Q-markers from JQJT preparation. Methods: This strategy mainly involved chemical profiling of herbal medicines, statistic processing of metabolomic datasets, detection of different anti-diabetes activities and establishing of BP-ANN model. The chemical features of seventy-eight batches of JQJT extracts were first profiled using an untargeted UPLC-LTQ-Orbitrap metabolomic approach. The obtained chemical features associated with different anti-diabetes activities based on three modes of action were normalized, ranked, and then pre-selected by using ReliefF feature selection, respectively. BP-ANN model was then established and optimized to screen Q-markers based on mean impact value (MIV).Results: Optimized BP-ANN architecture was established with high accuracy of R > 0.9983 and relative low error of MSE < 0.0014, which showed better performance than that of PLSR calibration model (R2 < 0.5). Meanwhile, the BP-ANN model was subsequently applied to further screen potential bioactive components from the pre-selected chemical features by calculating their MIVs. Using this machine learning model, 15 potential Q-markers with bioactivity were discovered from JQJT. The tested anti-diabetes bioactivities of 78 batches of JQJT could be accurately predicted.Conclusions: The proposed artificial intelligence approach is suitable for quick and easy discovery of Q-markers with bioactivity from herbal medicines.


Sign in / Sign up

Export Citation Format

Share Document