1552-P: Machine Learning Approach to Decision-Making for Initial Insulin Use in Japanese Patients with Type 2 Diabetes

Diabetes ◽  
2020 ◽  
Vol 69 (Supplement 1) ◽  
pp. 1552-P
Author(s):  
KAZUYA FUJIHARA ◽  
MAYUKO H. YAMADA ◽  
YASUHIRO MATSUBAYASHI ◽  
MASAHIKO YAMAMOTO ◽  
TOSHIHIRO IIZUKA ◽  
...  
2016 ◽  
Vol 11 (4) ◽  
pp. 791-799 ◽  
Author(s):  
Rina Kagawa ◽  
Yoshimasa Kawazoe ◽  
Yusuke Ida ◽  
Emiko Shinohara ◽  
Katsuya Tanaka ◽  
...  

Background: Phenotyping is an automated technique that can be used to distinguish patients based on electronic health records. To improve the quality of medical care and advance type 2 diabetes mellitus (T2DM) research, the demand for T2DM phenotyping has been increasing. Some existing phenotyping algorithms are not sufficiently accurate for screening or identifying clinical research subjects. Objective: We propose a practical phenotyping framework using both expert knowledge and a machine learning approach to develop 2 phenotyping algorithms: one is for screening; the other is for identifying research subjects. Methods: We employ expert knowledge as rules to exclude obvious control patients and machine learning to increase accuracy for complicated patients. We developed phenotyping algorithms on the basis of our framework and performed binary classification to determine whether a patient has T2DM. To facilitate development of practical phenotyping algorithms, this study introduces new evaluation metrics: area under the precision-sensitivity curve (AUPS) with a high sensitivity and AUPS with a high positive predictive value. Results: The proposed phenotyping algorithms based on our framework show higher performance than baseline algorithms. Our proposed framework can be used to develop 2 types of phenotyping algorithms depending on the tuning approach: one for screening, the other for identifying research subjects. Conclusions: We develop a novel phenotyping framework that can be easily implemented on the basis of proper evaluation metrics, which are in accordance with users’ objectives. The phenotyping algorithms based on our framework are useful for extraction of T2DM patients in retrospective studies.


Author(s):  
Muhammad Younus ◽  
Md Tahsir Ahmed Munna ◽  
Mirza Mohtashim Alam ◽  
Shaikh Muhammad Allayear ◽  
Sheikh Joly Ferdous Ara

2020 ◽  
Author(s):  
Kazuya Fujihara ◽  
Yasuhiro Matsubayashi ◽  
Mayuko Harada Yamada ◽  
Masahiko Yamamoto ◽  
Toshihiro Iizuka ◽  
...  

BACKGROUND Applications of machine learning for the early detection of diseases for which a clear-cut diagnostic gold standard exists have been evaluated. However, little is known about the usefulness of machine learning approaches in the decision-making process for decisions such as insulin initiation by diabetes specialists for which no absolute standards exist in clinical settings. OBJECTIVE The objectives of this study were to examine the ability of machine learning models to predict insulin initiation by specialists and whether the machine learning approach could support decision making by general physicians for insulin initiation in patients with type 2 diabetes. METHODS Data from patients prescribed hypoglycemic agents from December 2009 to March 2015 were extracted from diabetes specialists’ registries, resulting in a sample size of 4860 patients who had received initial monotherapy with either insulin (n=293) or noninsulin (n=4567). Neural network output was insulin initiation ranging from 0 to 1 with a cutoff of >0.5 for the dichotomous classification. Accuracy, recall, and area under the receiver operating characteristic curve (AUC) were calculated to compare the ability of machine learning models to make decisions regarding insulin initiation to the decision-making ability of logistic regression and general physicians. By comparing the decision-making ability of machine learning and logistic regression to that of general physicians, 7 cases were chosen based on patient information as the gold standard based on the agreement of 8 of the 9 specialists. RESULTS The AUCs, accuracy, and recall of logistic regression were higher than those of machine learning (AUCs of 0.89-0.90 for logistic regression versus 0.67-0.74 for machine learning). When the examination was limited to cases receiving insulin, discrimination by machine learning was similar to that of logistic regression analysis (recall of 0.05-0.68 for logistic regression versus 0.11-0.52 for machine learning). Accuracies of logistic regression, a machine learning model (downsampling ratio of 1:8), and general physicians were 0.80, 0.70, and 0.66, respectively, for 43 randomly selected cases. For the 7 gold standard cases, the accuracies of logistic regression and the machine learning model were 1.00 and 0.86, respectively, with a downsampling ratio of 1:8, which were higher than the accuracy of general physicians (ie, 0.43). CONCLUSIONS Although we found no superior performance of machine learning over logistic regression, machine learning had higher accuracy in prediction of insulin initiation than general physicians, defined by diabetes specialists’ choice of the gold standard. Further study is needed before the use of machine learning–based decision support systems for insulin initiation can be incorporated into clinical practice.


2017 ◽  
Vol 31 (19-21) ◽  
pp. 1740055 ◽  
Author(s):  
Jiang Xie ◽  
Yan Liu ◽  
Xu Zeng ◽  
Wu Zhang ◽  
Zhen Mei

An extensive, in-depth study of diabetes risk factors (DBRF) is of crucial importance to prevent (or reduce) the chance of suffering from type 2 diabetes (T2D). Accumulation of electronic health records (EHRs) makes it possible to build nonlinear relationships between risk factors and diabetes. However, the current DBRF researches mainly focus on qualitative analyses, and the inconformity of physical examination items makes the risk factors likely to be lost, which drives us to study the novel machine learning approach for risk model development. In this paper, we use Bayesian networks (BNs) to analyze the relationship between physical examination information and T2D, and to quantify the link between risk factors and T2D. Furthermore, with the quantitative analyses of DBRF, we adopt EHR and propose a machine learning approach based on BNs to predict the risk of T2D. The experiments demonstrate that our approach can lead to better predictive performance than the classical risk model.


2021 ◽  
Vol 16 (1) ◽  
Author(s):  
Lele Yang ◽  
Yan Xue ◽  
Jinchao Wei ◽  
Qi Dai ◽  
Peng Li

Abstract Background Jinqi Jiangtang (JQJT) has been widely used in clinical practice to prevent and treat type 2 diabetes. However, little research has been done to identify and classify its quality markers (Q-markers) associated with anti-diabetes bioactivity. In this study, a strategy combining mass spectrometry-based untargeted metabolomics with backpropagation artificial neural network (BP-ANN)-based machine learning approach was proposed to screen Q-markers from JQJT preparation. Methods This strategy mainly involved chemical profiling of herbal medicines, statistic processing of metabolomic datasets, detection of different anti-diabetes activities and establishment of BP-ANN model. The chemical features of seventy-eight batches of JQJT extracts were first profiled by using the untargeted UPLC-LTQ-Orbitrap metabolomic approach. The chemical features obtained which were associated with different anti-diabetes activities based on three modes of action were normalized, ranked, and then pre-selected by using ReliefF feature selection. BP-ANN model was then established and optimized to screen Q-markers based on mean impact value (MIV). Results Optimized BP-ANN architecture was established with high accuracy of R > 0.9983 and relative low error of MSE < 0.0014, which showed better performance than that of partial least square (PLS) model (R2 < 0.5). Meanwhile, the BP-ANN model was subsequently applied to further screen potential bioactive components from the pre-selected chemical features by calculating their MIVs. With this machine learning model, 10 potential Q-markers with bioactivity were discovered from JQJT. The tested anti-diabetes bioactivities of 78 batches of JQJT could be accurately predicted. Conclusions This proposed artificial intelligence approach is desirable for quick and easy identification of Q-markers with bioactivity from JQJT preparation.


2020 ◽  
Author(s):  
Lele Yang ◽  
Yan Xue ◽  
Jinchao Wei ◽  
Qi Dai ◽  
Peng Li

Abstract Background: Jinqi Jiangtang (JQJT) has been widely used in clinical practice to prevent and treat type 2 diabetes. However, little was known about its quality markers (Q-markers) associated with anti-diabetes bioactivity. In this study, a strategy combining mass spectrometry-based untargeted metabolomics with backpropagation artificial neural network (BP-ANN)-based machine learning approach was proposed to screen Q-markers from JQJT preparation. Methods: This strategy mainly involved chemical profiling of herbal medicines, statistic processing of metabolomic datasets, detection of different anti-diabetes activities and establishing of BP-ANN model. The chemical features of seventy-eight batches of JQJT extracts were first profiled using an untargeted UPLC-LTQ-Orbitrap metabolomic approach. The obtained chemical features associated with different anti-diabetes activities based on three modes of action were normalized, ranked, and then pre-selected by using ReliefF feature selection, respectively. BP-ANN model was then established and optimized to screen Q-markers based on mean impact value (MIV).Results: Optimized BP-ANN architecture was established with high accuracy of R > 0.9983 and relative low error of MSE < 0.0014, which showed better performance than that of PLSR calibration model (R2 < 0.5). Meanwhile, the BP-ANN model was subsequently applied to further screen potential bioactive components from the pre-selected chemical features by calculating their MIVs. Using this machine learning model, 15 potential Q-markers with bioactivity were discovered from JQJT. The tested anti-diabetes bioactivities of 78 batches of JQJT could be accurately predicted.Conclusions: The proposed artificial intelligence approach is suitable for quick and easy discovery of Q-markers with bioactivity from herbal medicines.


10.2196/22148 ◽  
2021 ◽  
Vol 9 (1) ◽  
pp. e22148
Author(s):  
Kazuya Fujihara ◽  
Yasuhiro Matsubayashi ◽  
Mayuko Harada Yamada ◽  
Masahiko Yamamoto ◽  
Toshihiro Iizuka ◽  
...  

Background Applications of machine learning for the early detection of diseases for which a clear-cut diagnostic gold standard exists have been evaluated. However, little is known about the usefulness of machine learning approaches in the decision-making process for decisions such as insulin initiation by diabetes specialists for which no absolute standards exist in clinical settings. Objective The objectives of this study were to examine the ability of machine learning models to predict insulin initiation by specialists and whether the machine learning approach could support decision making by general physicians for insulin initiation in patients with type 2 diabetes. Methods Data from patients prescribed hypoglycemic agents from December 2009 to March 2015 were extracted from diabetes specialists’ registries, resulting in a sample size of 4860 patients who had received initial monotherapy with either insulin (n=293) or noninsulin (n=4567). Neural network output was insulin initiation ranging from 0 to 1 with a cutoff of >0.5 for the dichotomous classification. Accuracy, recall, and area under the receiver operating characteristic curve (AUC) were calculated to compare the ability of machine learning models to make decisions regarding insulin initiation to the decision-making ability of logistic regression and general physicians. By comparing the decision-making ability of machine learning and logistic regression to that of general physicians, 7 cases were chosen based on patient information as the gold standard based on the agreement of 8 of the 9 specialists. Results The AUCs, accuracy, and recall of logistic regression were higher than those of machine learning (AUCs of 0.89-0.90 for logistic regression versus 0.67-0.74 for machine learning). When the examination was limited to cases receiving insulin, discrimination by machine learning was similar to that of logistic regression analysis (recall of 0.05-0.68 for logistic regression versus 0.11-0.52 for machine learning). Accuracies of logistic regression, a machine learning model (downsampling ratio of 1:8), and general physicians were 0.80, 0.70, and 0.66, respectively, for 43 randomly selected cases. For the 7 gold standard cases, the accuracies of logistic regression and the machine learning model were 1.00 and 0.86, respectively, with a downsampling ratio of 1:8, which were higher than the accuracy of general physicians (ie, 0.43). Conclusions Although we found no superior performance of machine learning over logistic regression, machine learning had higher accuracy in prediction of insulin initiation than general physicians, defined by diabetes specialists’ choice of the gold standard. Further study is needed before the use of machine learning–based decision support systems for insulin initiation can be incorporated into clinical practice.


Sign in / Sign up

Export Citation Format

Share Document