An improved SFLA for flexible job shop scheduling problem considering energy consumption

2018 ◽  
Vol 32 (34n36) ◽  
pp. 1840112 ◽  
Author(s):  
Xiaoxing Zhang ◽  
Zhicheng Ji ◽  
Yan Wang

In this paper, a multi-objective flexible job shop scheduling problem (MOFJSP) was studied systematically. A novel energy-saving scheduling model was established based on considering makespan and total energy consumption simultaneously. Different from previous studies, four types of energy consumption were considered in this model, including processing energy, idle energy, transport energy, and turn-on/off energy. In addition, a turn-off strategy is adopted for energy-saving. A modified shuffled frog-leaping algorithm (SFLA) was applied to solve this model. Moreover, operators of multi-point crossover and neighborhood search were both employed to obtain optimal solutions. Experiments were conducted to verify the performance of the SFLA compared with a non-dominated sorting genetic algorithm with blood variation (BVNSGA-II). The results show that this algorithm and strategy are very effective.

2021 ◽  
Vol 7 ◽  
pp. e574
Author(s):  
Nayeli Jazmin Escamilla Serna ◽  
Juan Carlos Seck-Tuoh-Mora ◽  
Joselito Medina-Marin ◽  
Norberto Hernandez-Romero ◽  
Irving Barragan-Vite ◽  
...  

The Flexible Job Shop Scheduling Problem (FJSP) is a combinatorial problem that continues to be studied extensively due to its practical implications in manufacturing systems and emerging new variants, in order to model and optimize more complex situations that reflect the current needs of the industry better. This work presents a new metaheuristic algorithm called the global-local neighborhood search algorithm (GLNSA), in which the neighborhood concepts of a cellular automaton are used, so that a set of leading solutions called smart-cells generates and shares information that helps to optimize instances of the FJSP. The GLNSA algorithm is accompanied by a tabu search that implements a simplified version of the Nopt1 neighborhood defined in Mastrolilli & Gambardella (2000) to complement the optimization task. The experiments carried out show a satisfactory performance of the proposed algorithm, compared with other results published in recent algorithms, using four benchmark sets and 101 test problems.


Machines ◽  
2021 ◽  
Vol 9 (12) ◽  
pp. 344
Author(s):  
Mingliang Wu ◽  
Dongsheng Yang ◽  
Bowen Zhou ◽  
Zhile Yang ◽  
Tianyi Liu ◽  
...  

The flexible job shop scheduling problem has always been the focus of research in the manufacturing field. However, most of the previous studies focused more on efficiency and ignored energy consumption. Energy, especially non-renewable energy, is an essential factor affecting the sustainable development of a country. To this end, this paper designs a flexible job shop scheduling problem model with energy consideration more in line with the production field. Except for the processing stage, the energy consumption of the transport, set up, unload, and idle stage are also included in our model. The weight property of jobs is also considered in our model. The heavier the job, the more energy it consumes during the transport, set up, and unload stage. Meanwhile, this paper invents an adaptive population non-dominated sorting genetic algorithm III (APNSGA-III) that combines the dual control strategy with the non-dominated sorting genetic algorithm III (NSGA-III) to solve our flexible job shop scheduling problem model. Four flexible job shop scheduling problem instances are formulated to examine the performance of our algorithm. The results achieved by the APNSGA-III method are compared with five classic multi-objective optimization algorithms. The results show that our proposed algorithm is efficient and powerful when dealing with the multi-objective flexible job shop scheduling problem model that includes energy consumption.


Sign in / Sign up

Export Citation Format

Share Document