Nonlinear energy deposition of filamentation with femtosecond Airy laser beams in water

2019 ◽  
Vol 33 (28) ◽  
pp. 1950339
Author(s):  
Qingwei Zeng ◽  
Lei Liu ◽  
Kejin Zhang ◽  
Taichang Gao ◽  
Ming Chen ◽  
...  

The nonlinear propagation of femtosecond Airy laser filaments in water is numerically investigated in this paper. We mainly consider the influences of confinement parameter, pulse duration and beam waist on the deposited energy of filaments. The values of confinement parameter are found to have a significant impact on the temporal and spatial dynamics of the pulse. The characteristics of energy deposition also differ widely for Airy beams with different confinement parameters. The less the confinement parameter, the more energy deposited by filamentation. However, the relative deposited energy evolves relatively small changes under different confinement parameters. We also found the longer pulse duration and longer beam waist are beneficial to the total deposited energy increase.

2019 ◽  
Vol 9 (20) ◽  
pp. 4201
Author(s):  
Qingwei Zeng ◽  
Lei Liu ◽  
Kejin Zhang ◽  
Shuai Hu ◽  
Taichang Gao ◽  
...  

The effects of water vapor ionization on the nonlinear propagation of femtosecond laser pulses with a 248 nm wavelength are numerically investigated in this paper. It is found that ionization of H2O molecules plays a significant role in air ionization, which seriously affects the dynamic and energy deposition of filamentation. The propagation of femtosecond pulses in air with different humidity levels are compared. The total number of electrons and total deposited pulse energy increase with the humidity increases. However, they tend to be saturated in high humidity conditions. Results presented here are conducive to characterizing the long-range propagation of filaments under atmospheric conditions.


2017 ◽  
Author(s):  
International Food Policy Research Institute (IFPRI)

2021 ◽  
Vol 13 (6) ◽  
pp. 1180
Author(s):  
Da Guo ◽  
Xiaoning Song ◽  
Ronghai Hu ◽  
Xinming Zhu ◽  
Yazhen Jiang ◽  
...  

The Hindu Kush Himalayan (HKH) region is one of the most ecologically vulnerable regions in the world. Several studies have been conducted on the dynamic changes of grassland in the HKH region, but few have considered grassland net ecosystem productivity (NEP). In this study, we quantitatively analyzed the temporal and spatial changes of NEP magnitude and the influence of climate factors on the HKH region from 2001 to 2018. The NEP magnitude was obtained by calculating the difference between the net primary production (NPP) estimated by the Carnegie–Ames Stanford Approach (CASA) model and the heterotrophic respiration (Rh) estimated by the geostatistical model. The results showed that the grassland ecosystem in the HKH region exhibited weak net carbon uptake with NEP values of 42.03 gC∙m−2∙yr−1, and the total net carbon sequestration was 0.077 Pg C. The distribution of NEP gradually increased from west to east, and in the Qinghai–Tibet Plateau, it gradually increased from northwest to southeast. The grassland carbon sources and sinks differed at different altitudes. The grassland was a carbon sink at 3000–5000 m, while grasslands below 3000 m and above 5000 m were carbon sources. Grassland NEP exhibited the strongest correlation with precipitation, and it had a lagging effect on precipitation. The correlation between NEP and the precipitation of the previous year was stronger than that of the current year. NEP was negatively correlated with temperature but not with solar radiation. The study of the temporal and spatial dynamics of NEP in the HKH region can provide a theoretical basis to help herders balance grazing and forage.


Zoology ◽  
2021 ◽  
pp. 125931
Author(s):  
R.P. Eusébio ◽  
H. Enghoff ◽  
A. Solodovnikov ◽  
A. Michelsen ◽  
P. Barranco ◽  
...  

2010 ◽  
Vol 128 (4) ◽  
pp. 473-482 ◽  
Author(s):  
Adalberto C. Café-Filho ◽  
Gil R. Santos ◽  
Francisco F. Laranjeira

Sign in / Sign up

Export Citation Format

Share Document