Lie symmetry reductions, abound exact solutions and localized wave structures of solitons for a (2 + 1)-dimensional Bogoyavlenskii equation

2021 ◽  
pp. 2150252
Author(s):  
Sachin Kumar ◽  
Monika Niwas

By applying the two efficient mathematical methods particularly with regard to the classical Lie symmetry approach and generalized exponential rational function method, numerous exact solutions are constructed for a (2 + 1)-dimensional Bogoyavlenskii equation, which describes the interaction of Riemann wave propagation along the spatial axes. Moreover, we obtain the infinitesimals, all the possible vector fields, optimal system, and Lie symmetry reductions. The governing Bogoyavlenskii equation is converted into various nonlinear ordinary differential equations through two stages of Lie symmetry reductions. Accordingly, abundant exact closed-form solutions are obtained explicitly in terms of independent arbitrary functions, rational functions, trigonometric functions, and hyperbolic functions with arbitrary free parameters. The dynamical behavior of the resulting soliton solutions is presented through 3D-plots via numerical simulation. Eventually, single solitons, multi-solitons with oscillations, kink wave with breather-type solitons, and single lump-type solitons are obtained. The proposed mathematical techniques are effective, trustworthy, and reliable mathematical tools to work out new exact closed-form solutions of various types of nonlinear evolution equations in mathematical physics and engineering sciences.

2020 ◽  
Vol 34 (25) ◽  
pp. 2050221
Author(s):  
S. Kumar ◽  
D. Kumar

In this present article, the new [Formula: see text]-dimensional modified Calogero-Bogoyavlenskii-Schiff (mCBS) equation is studied. Using the Lie group of transformation method, all of the vector fields, commutation table, invariant surface condition, Lie symmetry reductions, infinitesimal generators and explicit solutions are constructed. As we all know, an optimal system contains constructively important information about the various types of exact solutions and it also offers clear understandings into the exact solutions and its features. The symmetry reductions of [Formula: see text]-dimensional mCBS equation is derived from an optimal system of one-dimensional subalgebra of the Lie invariance algebra. Then, the mCBS equation can further be reduced into a number of nonlinear ODEs. The generated explicit solutions have different wave structures of solitons and they are analyzed graphically and physically in order to exhibit their dynamical behavior through 3D, 2D-shapes and respective contour plots. All the produced solutions are definitely new and totally different from the earlier study of the Manukure and Zhou (Int. J. Mod. Phys. B 33, (2019)). Some of these solutions are demonstrated by the means of solitary wave profiles like traveling wave, multi-solitons, doubly solitons, parabolic waves and singular soliton. The calculations show that this Lie symmetry method is highly powerful, productive and useful to study analytically other nonlinear evolution equations in acoustics physics, plasma physics, fluid dynamics, mathematical biology, mathematical physics and many other related fields of physical sciences.


Author(s):  
Sanjaya K. Mohanty ◽  
Sachin Kumar ◽  
Manoj K. Deka ◽  
Apul N. Dev

In this paper, we investigate two different constant-coefficient nonlinear evolution equations, namely the Schamel Burgers equation and the Schamel equation. These models also have a great deal of potential for studying ion-acoustic waves in plasma physics and fluid dynamics. The primary goal of this paper is to establish closed-form solutions and dynamics of analytical solutions to the Schamel Burgers and the Schamel equations, which are special examples of the well-known Schamel–Korteweg-de Vries (S-KdV) equation. We derive completely novel solutions to the considered models using a variety of computation programmes and a newly proposed extended generalized [Formula: see text] expansion approach. The newly formed solutions, which include hyperbolic and trigonometric functions as well as rational function solutions, have been produced. The annihilation of three-dimensional shock waves, periodic waves, single soliton, singular soliton, and combo soliton, multisoliton as well as their three-dimensional and contour plots are used to show the dynamical representations of the acquired solutions. These results demonstrate that the proposed extended technique is efficient, reliable and simple.


2019 ◽  
Vol 4 (3) ◽  
pp. 397-411 ◽  
Author(s):  
M. Ali Akbar ◽  
◽  
Norhashidah Hj. Mohd. Ali ◽  
M. Tarikul Islam ◽  
◽  
...  

2012 ◽  
Vol 2012 ◽  
pp. 1-16 ◽  
Author(s):  
Yun-Mei Zhao

A generalized(G′/G)-expansion method is proposed to seek the exact solutions of nonlinear evolution equations. Being concise and straightforward, this method is applied to the Zakharov equations. As a result, some new Jacobi elliptic function solutions of the Zakharov equations are obtained. This method can also be applied to other nonlinear evolution equations in mathematical physics.


2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Fan Niu ◽  
Jianming Qi ◽  
Zhiyong Zhou

Finding exact solutions of nonlinear equations plays an important role in nonlinear science, especially in engineering and mathematical physics. In this paper, we employed the complex method to get eight exact solutions of the modified BBM equation for the first time, including two elliptic function solutions, two simply periodic solutions, and four rational function solutions. We used the exp − ϕ z -expansion methods to get fourteen forms of solutions of the modified BBM equation. We also used the sine-cosine method to obtain eight styles’ exact solutions of the modified BBM equation. Only the complex method can obtain elliptic function solutions. We believe that the complex method presented in this paper can be more effectively applied to seek solutions of other nonlinear evolution equations.


Author(s):  
Ahmet Bekir ◽  
Esin Aksoy

The main goal of this paper is to develop subequation method for solving nonlinear evolution equations of time-fractional order. We use the subequation method to calculate the exact solutions of the time-fractional Burgers, Sharma–Tasso–Olver, and Fisher's equations. Consequently, we establish some new exact solutions for these equations.


2014 ◽  
Vol 2014 ◽  
pp. 1-11 ◽  
Author(s):  
Qazi Mahmood Ul Hassan ◽  
Jamshad Ahmad ◽  
Muhammad Shakeel

We use the fractional derivatives in Caputo’s sense to construct exact solutions to fractional fifth order nonlinear evolution equations. A generalized fractional complex transform is appropriately used to convert this equation to ordinary differential equation which subsequently resulted in a number of exact solutions.


2021 ◽  
pp. 2150444
Author(s):  
Loubna Ouahid ◽  
M. A. Abdou ◽  
S. Owyed ◽  
Sachin Kumar

The deoxyribonucleic acid (DNA) dynamical equation, which emerges from the oscillator chain known as the Peyrard–Bishop (PB) model for abundant optical soliton solutions, is presented, along with a novel fractional derivative operator. The Kudryashov expansion method and the extended hyperbolic function (HF) method are used to construct novel abundant exact soliton solutions, including light, dark, and other special solutions that can be directly evaluated. These newly formed soliton solutions acquired here lead one to ask whether the analytical approach could be extended to deal with other nonlinear evolution equations with fractional space–time derivatives arising in engineering physics and nonlinear sciences. It is noted that the newly proposed methods’ performance is most reliable and efficient, and they will be used to construct new generalized expressions of exact closed-form solutions for any other NPDEs of fractional order.


Sign in / Sign up

Export Citation Format

Share Document