Efficiency at maximum power of quantum-mechanical Carnot engine enhanced by energy quantization

2021 ◽  
pp. 2150320
Author(s):  
Shou-Bao Zhu ◽  
Guang-Qian Jiao ◽  
Jian-Hui Wang

In an adiabatic process, the change in energies of select states may be inhomogenously scaled due to energy quantization. To illustrate this, we introduce a [Formula: see text] barrier turning up (turning down) in an adiabatic expansion (compression). We consider a quantum-mechanical Carnot engine employing a single particle confined in an infinite potential, assuming only the lowest two energy levels to be occupied. This cyclic engine model consists of two isoenergetic strokes where the system is alternatively coupled to two energy baths, and two adiabatic processes where the potential is adiabatically deformed with turning up or down a [Formula: see text] barrier. Having obtained the work output and efficiency, we analyze the efficiency at maximum power under the assumption that the potential moves at a very slow speed. We show that the efficiency at maximum power can be enhanced by energy quantization.

Author(s):  
Francisco J. Peña ◽  
Alejandro González ◽  
A.S. Nunez ◽  
Pedro Orellana ◽  
René G. Rojas ◽  
...  

We study the effect of the degeneracy factor in the energy levels of the well-known Landau problem for a magnetic quantum Otto engine. The scheme of the cycle is composed of two quantum adiabatic processes and two quantum isomagnetic processes driven by a quasi-static modulation of external magnetic field intensity. We derive the analytical expression of the relation between the magnetic field and temperature along the adiabatic process and, in particular, reproduce the expression for the efficiency as a function of the compression ratio.


Author(s):  
Francisco J. Peña ◽  
Alejandro González ◽  
A.S. Nunez ◽  
Pedro A. Orellana ◽  
René G. Rojas ◽  
...  

We study the effect of the degeneracy factor in the energy levels of the well-known Landau problem for a magnetic engine. The scheme of the cycle is composed of two adiabatic processes and two isomagnetic processes driven by a quasi-static modulation of external magnetic field intensity. We derive the analytical expression of the relation between the magnetic field and temperature along the adiabatic process and, in particular, reproduce the expression for the efficiency as a function of the compression ratio.


Author(s):  
Claus Riegler ◽  
Michael Bauer ◽  
Holger Schulte

During turbofan development programs the evaluation of steady-state and transient engine performance is usually achieved by applying full thermodynamic engine models at least in the operating range between idle and maximum power conditions, but more recently also in the sub-idle operating range, e.g. for steady-state windmilling behavior and for starting, relight and shut down scenarios. The paper describes the setup, and in more detail the validation, of a full thermodynamic engine model for a two-spool mixed flow afterburner turbofan which is capable to run from maximum power down to zero speed and zero flow conditions in steady-state and transient mode. The validation is performed by using the model-based performance analysis procedure called ANSYN even in windmilling operation. Once the steady-state sub-idle model is validated the extension to transient sub-idle capability is achieved by simply adding the effects of rotor moment of inertia of the spools, while heat soakage effects are rather negligible without heat release in the burner. Especially lighting conditions in the burner are produced by such a validated sub-idle model inherently due to reliable data calculated at the burner entry station. The variety of applications of a validated full thermodynamic engine model is large. The performance data delivered is highly reliable and very consistent because the full operating range of the engine is covered with one model, and by appropriate means of speeding up the calculation even real-time capability may be achieved. In the paper synthesized data for an engine dry crank is compared to real engine test data as one typical application.


2006 ◽  
Vol 84 (2) ◽  
pp. 145-164
Author(s):  
G R Lee-Dadswell ◽  
C G Gray

Semiclassical variational methods are used to obtain estimates of the quantum mechanical energy levels for two simplified models of the potential seen by a helium atom trapped inside a C70 cage. We find that with the use of a simple trial solution, the calculations are simple. A more complicated trial trajectory, while improving some results of the calculation, makes the calculation prohibitively difficult. We also observe that as long as the precessional frequency of the orbits is small we can obtain very high accuracy in our results. However, the inability to accurately predict precessional frequencies results in poor prediction of energy levels when the precessional frequency is large.PACS No.: 5.45.Mt


2010 ◽  
Vol 133 (5) ◽  
pp. 054101 ◽  
Author(s):  
Alexey L. Kaledin ◽  
C. William McCurdy ◽  
William H. Miller

The theory of quantum-mechanical grand canonical ensembles is used to derive for the case of a perfect Bose-Einstein gas the average number of particles in the different energy levels, the fluctuations in these numbers and the equation of state. The Einstein condensation phenomenon is then discussed, and it is shown that in a p-v diagram (v being the specific volume) the isotherm consists of two analytically different parts in the limit where the number of particles in the system, JV, goes to infinity. It is also shown that for finite N at the critical volume ∂ n p/∂v n is of the order N1/3 (n-2) in accordance with a result obtained by Wergeland & Hove-Storhoug.


1991 ◽  
Vol 05 (03) ◽  
pp. 497-507 ◽  
Author(s):  
V.E. KOREPIN ◽  
A.C.T. WU

In a recent paper, B. Sutherland and B.S. Shastry have constructed an adiabatic process for the Heisenberg spin chain (spin ½) with respect to a change of boundary conditions. In this paper we calculate Berry’s phase for this process. We also evaluate the dependence of energy levels on boundary conditions which permits us to calculate the effective charge-carrying mass.


Sign in / Sign up

Export Citation Format

Share Document