VIDEO-BASED FACE RECOGNITION AND TRACKING FROM A ROBOT COMPANION

Author(s):  
T. GERMA ◽  
F. LERASLE ◽  
T. SIMON

This paper deals with video-based face recognition and tracking from a camera mounted on a mobile robot companion. All persons must be logically identified before being authorized to interact with the robot while continuous tracking is compulsory in order to estimate the person's approximate position. A first contribution relates to experiments of still-image-based face recognition methods in order to check which image projection and classifier associations give the highest performance of the face database acquired from our robot. Our approach, based on Principal Component Analysis (PCA) and Support Vector Machines (SVM) improved by genetic algorithm optimization of the free-parameters, is found to outperform conventional appearance-based holistic classifiers (eigenface and Fisherface) which are used as benchmarks. Relative performances are analyzed by means of Receiver Operator Characteristics which systematically provide optimized classifier free-parameter settings. Finally, for the SVM-based classifier, we propose a non-dominated sorting genetic algorithm to obtain optimized free-parameter settings. The second and central contribution is the design of a complete still-to-video face recognition system, dedicated to the previously identified person, which integrates face verification, as intermittent features, and shape and clothing color, as persistent cues, in a robust and probabilistically motivated way. The particle filtering framework, is well-suited to this context as it facilitates the fusion of different measurement sources. Automatic target recovery, after full occlusion or temporally disappearance from the field of view, is provided by positioning the particles according to face classification probabilities in the importance function. Moreover, the multi-cue fusion in the measurement function proves to be more reliable than any other individual cues. Evaluations on key-sequences acquired by the robot during long-term operations in crowded and continuously changing indoor environments demonstrate the robustness of the tracker against such natural settings. Mixing all these cues makes our video-based face recognition system work under a wide range of conditions encountered by the robot during its movements. The paper concludes with a discussion of possible extensions.

Author(s):  
Pauline Ong ◽  
Tze Wei Chong ◽  
Woon Kiow Lee

The traditional approach of student attendance monitoring system in Universiti Tun Hussein Onn Malaysia is slow and disruptive. As a solution, biometric verification based on face recognition for student attendance monitoring was presented. The face recognition system consisted of five main stages. Firstly, face images under various conditions were acquired. Next, face detection was performed using the Viola Jones algorithm to detect the face in the original image. The original image was minimized and transformed into grayscale for faster computation. Histogram techniques of oriented gradients was applied to extract the features from the grayscale images, followed by the principal component analysis (PCA) in dimension reduction stage. Face recognition, the last stage of the entire system, using support vector machine (SVM) as classifier. The development of a graphical user interface for student attendance monitoring was also involved. The highest face recognition accuracy of 62% was achieved. The obtained results are less promising which warrants further analysis and improvement.


2019 ◽  
Vol 3 (2) ◽  
pp. 14-20
Author(s):  
Laith R. Fleah ◽  
Shaimaa A. Al-Aubi

Face recognition can represent a key requirement in various types of applications such as human-computer interface, monitoring systems, as well as personal identification. In this paper, design and implement of face recognition system are introduced. In this system, a combination of principal component analysis (PCA) and wavelet feature extraction algorithms with support vector machine (SVM) and K-nearest neighborhood classifier is used. PCA and wavelet transform methods are used to extract features from face image using and identify the image of the face using SVMs classifier as well as the neural network are used as a classifier to compare its results with the proposed system. For a more comprehensive comparison, two face image databases (Yale and ORL) are used to test the performance of the system. Finally, the experimental results show the efficiency and reliability of face recognition system, and the results demonstrate accuracy on two databases indicated that the results enhancement 5% using the SVM classifier with polynomial Kernel function compared to use feedforward neural network classifier.


2013 ◽  
Vol 10 (2) ◽  
pp. 1330-1338
Author(s):  
Vasudha S ◽  
Neelamma K. Patil ◽  
Dr. Lokesh R. Boregowda

Face recognition is one of the important applications of image processing and it has gained significant attention in wide range of law enforcement areas in which security is of prime concern. Although the existing automated machine recognition systems have certain level of maturity but their accomplishments are limited due to real time challenges. Face recognition systems are impressively sensitive to appearance variations due to lighting, expression and aging. The major metric in modeling the performance of a face recognition system is its accuracy of recognition. This paper proposes a novel method which improves the recognition accuracy as well as avoids face datasets being tampered through image splicing techniques. Proposed method uses a non-statistical procedure which avoids training step for face samples thereby avoiding generalizability problem which is caused due to statistical learning procedure. This proposed method performs well with images with partial occlusion and images with lighting variations as the local patch of the face is divided into several different patches. The performance improvement is shown considerably high in terms of recognition rate and storage space by storing train images in compressed domain and selecting significant features from superset of feature vectors for actual recognition.


Sign in / Sign up

Export Citation Format

Share Document