CMAC WITH CLUSTERING MEMORY AND ITS APPLICATION TO FACIAL EXPRESSION RECOGNITION

Author(s):  
YU-YI LIAO ◽  
JZAU-SHENG LIN ◽  
SHEN-CHUAN TAI

In this paper, a facial expression recognition system based on cerebella model articulation controller with a clustering memory (CMAC-CM) is presented. Firstly, the facial expression features were automatically preprocessed and extracted from given still images in the JAFFE database in which the frontal view of faces were contained. Next, a block of lower frequency DCT coefficients was obtained by subtracting a neutral image from a given expression image and rearranged as input vectors to be fed into the CMAC-CM that can rapidly obtain output using nonlinear mapping with a look-up table in training or recognizing phase. Finally, the experimental results have demonstrated recognition rates with various block sizes of coefficients in lower frequency and cluster sizes of weight memory. A mean recognition rate of 92.86% is achieved for the testing images. CMAC-CM takes 0.028 seconds for test image in testing phase.

Author(s):  
Padmapriya K.C. ◽  
Leelavathy V. ◽  
Angelin Gladston

The human facial expressions convey a lot of information visually. Facial expression recognition plays a crucial role in the area of human-machine interaction. Automatic facial expression recognition system has many applications in human behavior understanding, detection of mental disorders and synthetic human expressions. Recognition of facial expression by computer with high recognition rate is still a challenging task. Most of the methods utilized in the literature for the automatic facial expression recognition systems are based on geometry and appearance. Facial expression recognition is usually performed in four stages consisting of pre-processing, face detection, feature extraction, and expression classification. In this paper we applied various deep learning methods to classify the seven key human emotions: anger, disgust, fear, happiness, sadness, surprise and neutrality. The facial expression recognition system developed is experimentally evaluated with FER dataset and has resulted with good accuracy.


2019 ◽  
Vol 8 (2S11) ◽  
pp. 4047-4051

The automatic detection of facial expressions is an active research topic, since its wide fields of applications in human-computer interaction, games, security or education. However, the latest studies have been made in controlled laboratory environments, which is not according to real world scenarios. For that reason, a real time Facial Expression Recognition System (FERS) is proposed in this paper, in which a deep learning approach is applied to enhance the detection of six basic emotions: happiness, sadness, anger, disgust, fear and surprise in a real-time video streaming. This system is composed of three main components: face detection, face preparation and face expression classification. The results of proposed FERS achieve a 65% of accuracy, trained over 35558 face images..


2019 ◽  
Vol 8 (4) ◽  
pp. 3570-3574

The facial expression recognition system is playing vital role in many organizations, institutes, shopping malls to know about their stakeholders’ need and mind set. It comes under the broad category of computer vision. Facial expression can easily explain the true intention of a person without any kind of conversation. The main objective of this work is to improve the performance of facial expression recognition in the benchmark datasets like CK+, JAFFE. In order to achieve the needed accuracy metrics, the convolution neural network was constructed to extract the facial expression features automatically and combined with the handcrafted features extracted using Histogram of Gradients (HoG) and Local Binary Pattern (LBP) methods. Linear Support Vector Machine (SVM) is built to predict the emotions using the combined features. The proposed method produces promising results as compared to the recent work in [1].This is mainly needed in the working environment, shopping malls and other public places to effectively understand the likeliness of the stakeholders at that moment.


2014 ◽  
Vol 543-547 ◽  
pp. 2350-2353
Author(s):  
Xiao Yan Wan

In order to extract the expression features of critically ill patients, and realize the computer intelligent nursing, an improved facial expression recognition method is proposed based on the of active appearance model, the support vector machine (SVM) for facial expression recognition is taken in research, and the face recognition model structure active appearance model is designed, and the attribute reduction algorithm of rough set affine transformation theory is introduced, and the invalid and redundant feature points are removed. The critically ill patient expressions are classified and recognized based on the support vector machine (SVM). The face image attitudes are adjusted, and the self-adaptive performance of facial expression recognition for the critical patient attitudes is improved. New method overcomes the effect of patient attitude to the recognition rate to a certain extent. The highest average recognition rate can be increased about 7%. The intelligent monitoring and nursing care of critically ill patients are realized with the computer vision effect. The nursing quality is enhanced, and it ensures the timely treatment of rescue.


Sign in / Sign up

Export Citation Format

Share Document