Computer Intelligent Nursing Care of Critically III Patients Based on Improved Patient Facial Expression Recognition Method

2014 ◽  
Vol 543-547 ◽  
pp. 2350-2353
Author(s):  
Xiao Yan Wan

In order to extract the expression features of critically ill patients, and realize the computer intelligent nursing, an improved facial expression recognition method is proposed based on the of active appearance model, the support vector machine (SVM) for facial expression recognition is taken in research, and the face recognition model structure active appearance model is designed, and the attribute reduction algorithm of rough set affine transformation theory is introduced, and the invalid and redundant feature points are removed. The critically ill patient expressions are classified and recognized based on the support vector machine (SVM). The face image attitudes are adjusted, and the self-adaptive performance of facial expression recognition for the critical patient attitudes is improved. New method overcomes the effect of patient attitude to the recognition rate to a certain extent. The highest average recognition rate can be increased about 7%. The intelligent monitoring and nursing care of critically ill patients are realized with the computer vision effect. The nursing quality is enhanced, and it ensures the timely treatment of rescue.

2020 ◽  
Vol 2020 ◽  
pp. 1-12
Author(s):  
Yifeng Zhao ◽  
Deyun Chen

Aiming at the problem of facial expression recognition under unconstrained conditions, a facial expression recognition method based on an improved capsule network model is proposed. Firstly, the expression image is normalized by illumination based on the improved Weber face, and the key points of the face are detected by the Gaussian process regression tree. Then, the 3dmms model is introduced. The 3D face shape, which is consistent with the face in the image, is provided by iterative estimation so as to further improve the image quality of face pose standardization. In this paper, we consider that the convolution features used in facial expression recognition need to be trained from the beginning and add as many different samples as possible in the training process. Finally, this paper attempts to combine the traditional deep learning technology with capsule configuration, adds an attention layer after the primary capsule layer in the capsule network, and proposes an improved capsule structure model suitable for expression recognition. The experimental results on JAFFE and BU-3DFE datasets show that the recognition rate can reach 96.66% and 80.64%, respectively.


Author(s):  
Issam Dagher ◽  
Elio Dahdah ◽  
Morshed Al Shakik

AbstractHerein, a three-stage support vector machine (SVM) for facial expression recognition is proposed. The first stage comprises 21 SVMs, which are all the binary combinations of seven expressions. If one expression is dominant, then the first stage will suffice; if two are dominant, then the second stage is used; and, if three are dominant, the third stage is used. These multilevel stages help reduce the possibility of experiencing an error as much as possible. Different image preprocessing stages are used to ensure that the features attained from the face detected have a meaningful and proper contribution to the classification stage. Facial expressions are created as a result of muscle movements on the face. These subtle movements are detected by the histogram-oriented gradient feature, because it is sensitive to the shapes of objects. The features attained are then used to train the three-stage SVM. Two different validation methods were used: the leave-one-out and K-fold tests. Experimental results on three databases (Japanese Female Facial Expression, Extended Cohn-Kanade Dataset, and Radboud Faces Database) show that the proposed system is competitive and has better performance compared with other works.


Author(s):  
Ruchir Srivastava ◽  
Shuicheng Yan ◽  
Terence Sim ◽  
Surendra Ranganath

Most of the works on Facial Expression Recognition (FER) have worked on 2D images or videos. However, researchers are now increasingly utilizing 3D information for FER. As a contribution, this chapter zooms in on 3D based approaches while introducing FER. Prominent works are reviewed briefly, and some of the issues involved in 3D FER are discussed along with the future research directions. In most of the FER approaches, there is a need for having a neutral (expressionless) face of the subject which might not always be practical. This chapter also presents a novel technique of feature extraction which does not require any neutral face of the test subject. A proposition has been verified experimentally that motion of a set of landmark points on the face, in exhibiting a particular facial expression, is similar in different persons. The presented approach shows promising results using Support Vector Machine (SVM) as the classifier.


Sensors ◽  
2020 ◽  
Vol 20 (18) ◽  
pp. 5391
Author(s):  
Suraiya Yasmin ◽  
Refat Khan Pathan ◽  
Munmun Biswas ◽  
Mayeen Uddin Khandaker ◽  
Mohammad Rashed Iqbal Faruque

Compelling facial expression recognition (FER) processes have been utilized in very successful fields like computer vision, robotics, artificial intelligence, and dynamic texture recognition. However, the FER’s critical problem with traditional local binary pattern (LBP) is the loss of neighboring pixels related to different scales that can affect the texture of facial images. To overcome such limitations, this study describes a new extended LBP method to extract feature vectors from images, detecting each image from facial expressions. The proposed method is based on the bitwise AND operation of two rotational kernels applied on LBP(8,1) and LBP(8,2) and utilizes two accessible datasets. Firstly, the facial parts are detected and the essential components of a face are observed, such as eyes, nose, and lips. The portion of the face is then cropped to reduce the dimensions and an unsharp masking kernel is applied to sharpen the image. The filtered images then go through the feature extraction method and wait for the classification process. Four machine learning classifiers were used to verify the proposed method. This study shows that the proposed multi-scale featured local binary pattern (MSFLBP), together with Support Vector Machine (SVM), outperformed the recent LBP-based state-of-the-art approaches resulting in an accuracy of 99.12% for the Extended Cohn–Kanade (CK+) dataset and 89.08% for the Karolinska Directed Emotional Faces (KDEF) dataset.


2020 ◽  
Vol 37 (4) ◽  
pp. 627-632
Author(s):  
Aihua Li ◽  
Lei An ◽  
Zihui Che

With the development of computer vision, facial expression recognition has become a research hotspot. To further improve the accuracy of facial expression recognition, this paper probes deep into image segmentation, feature extraction, and facial expression classification. Firstly, the convolution neural network (CNN) was adopted to accurately separate the salient regions from the face image. Next, the Gaussian Markov random field (GMRF) model was improved to enhance the ability of texture features to represent image information, and a novel feature extraction algorithm called specific angle abundance entropy (SAAE) was designed to improve the representation ability of shape features. After that, the texture features were combined with shape features, and trained and classified by the support vector machine (SVM) classifier. Finally, the proposed method was compared with common methods of facial expression recognition on a standard facial expression database. The results show that our method can greatly improve the accuracy of facial expression recognition.


Complexity ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Xiangmin Chen ◽  
Li Ke ◽  
Qiang Du ◽  
Jinghui Li ◽  
Xiaodi Ding

Facial expression recognition (FER) plays a significant part in artificial intelligence and computer vision. However, most of facial expression recognition methods have not obtained satisfactory results based on low-level features. The existed methods used in facial expression recognition encountered the major issues of linear inseparability, large computational burden, and data redundancy. To obtain satisfactory results, we propose an innovative deep learning (DL) model using the kernel entropy component analysis network (KECANet) and directed acyclic graph support vector machine (DAGSVM). We use the KECANet in the feature extraction stage. In the stage of output, binary hashing and blockwise histograms are adopted. We sent the final output features to the DAGSVM classifier for expression recognition. We test the performance of our proposed method on three databases of CK+, JAFFE, and CMU Multi-PIE. According to the experiment results, the proposed method can learn high-level features and provide more recognition information in the stage of training, obtaining a higher recognition rate.


2021 ◽  
Vol 260 ◽  
pp. 03013
Author(s):  
Yuqing Xie ◽  
Haichao Huang ◽  
Jianguang Hong ◽  
Xianke Zhou ◽  
Shilong Wu ◽  
...  

Facial expression recognition (FER) is an important means for machines to perceive human emotions and interact with human beings. Most of the existing facial expression recognition methods only use a single convolutional neural network to extract the global features of the face. Some insignificant details and features with low frequency are easy to be ignored, and part of the facial features are lost. This paper proposes a facial expression recognition method based on multi branch structure, which extracts the global and detailed features of the face from the global and local aspects respectively, so as to make a more detailed representation of the facial expression and further improve the accuracy of facial expression recognition. Specifically, we first design a multi branch network, which takes Resnet-50 as the backbone network. The network structure after Conv Block3 is divided into three branches. The first branch is used to extract the global features of the face, and the second and third branches are used to cut the face into two parts and three parts after Conv Block5 to extract the detailed features of the face. Finally, the global features and detail features are fused in the full connection layer and input into the classifier for classification. The experimental results show that the accuracy of this method is 73.7%, which is 4% higher than that of traditional Resnet-50, which fully verifies the effectiveness of this method.


2013 ◽  
Vol 373-375 ◽  
pp. 654-659
Author(s):  
Jin Xin Ruan ◽  
Li Ying Xie ◽  
Jun Xun Yin

The facial expression recognition technology has been widespread concerned and researched, and many methods have been presented. This paper focuses on studying and analyzing the feature extraction, feature dimension reduction and two-against-two multi-class Support Vector Machine (SVM) method, and an algorithm is proposed for recognition of six basic facial expressions. According to expression feature information in the different face region, the algorithm adopts local nonuniform feature point extraction to reduce the feature dimension. After transforming the feature points with Gabor filters, the Gabor expression features are obtained. And the feature dimension is further reduced by discrete wavelet transform (DWT) and discrete cosine transform (DCT). At last, the tow-against-two classification method and an optimum decision scheme are used to realize quick and accurate expression classification. Experimental results show the algorithm can achieve higher recognition rate, recognition speed and stronger robust.


2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Ben Niu ◽  
Zhenxing Gao ◽  
Bingbing Guo

Emotion plays an important role in communication. For human–computer interaction, facial expression recognition has become an indispensable part. Recently, deep neural networks (DNNs) are widely used in this field and they overcome the limitations of conventional approaches. However, application of DNNs is very limited due to excessive hardware specifications requirement. Considering low hardware specifications used in real-life conditions, to gain better results without DNNs, in this paper, we propose an algorithm with the combination of the oriented FAST and rotated BRIEF (ORB) features and Local Binary Patterns (LBP) features extracted from facial expression. First of all, every image is passed through face detection algorithm to extract more effective features. Second, in order to increase computational speed, the ORB and LBP features are extracted from the face region; specifically, region division is innovatively employed in the traditional ORB to avoid the concentration of the features. The features are invariant to scale and grayscale as well as rotation changes. Finally, the combined features are classified by Support Vector Machine (SVM). The proposed method is evaluated on several challenging databases such as Cohn-Kanade database (CK+), Japanese Female Facial Expressions database (JAFFE), and MMI database; experimental results of seven emotion state (neutral, joy, sadness, surprise, anger, fear, and disgust) show that the proposed framework is effective and accurate.


Sign in / Sign up

Export Citation Format

Share Document