A PARALLEL ALGORITHM FOR ANALYZING CONNECTED COMPONENTS IN BINARY IMAGES

Author(s):  
FRANCO CHIAVETTA ◽  
VITO DI GESÙ ◽  
ROSALIA RENDA

In this paper, a parallel algorithm for analyzing connected components in binary images is described. It is based on the extension of the Cylindrical Algebraic Decomposition (CAD) to a two-dimensional (2D) discrete space. This extension allows us to find the number of connected components, to determine their connectivity degree, and to solve the visibility problem. The parallel implementation of the algorithm is outlined and its time/space complexity is given.

2001 ◽  
Vol 11 (4) ◽  
pp. 239-296 ◽  
Author(s):  
Joos Heintz ◽  
Guillermo Matera ◽  
Ariel Waissbein
Keyword(s):  

2004 ◽  
Vol 4 (3) ◽  
pp. 201-206
Author(s):  
L. Grover ◽  
T. Rudolph

Quantum search is a technique for searching $N$ possibilities for a desired target in $O(\sqrt{N})$ steps. It has been applied in the design of quantum algorithms for several structured problems. Many of these algorithms require significant amount of quantum hardware. In this paper we propose the criterion that an algorithm which requires $O(S)$ hardware should be considered significant if it produces a speedup of better than $O\left(\sqrt{S}\right)$ over a simple quantum search algorithm. This is because a speedup of $O\left(\sqrt{S}\right)$ can be trivially obtained by dividing the search space into $S$ separate parts and handing the problem to $S$ independent processors that do a quantum search (in this paper we drop all logarithmic factors when discussing time/space complexity). Known algorithms for collision and element distinctness exactly saturate the criterion.


Author(s):  
KATSUSHI INOUE ◽  
ITSUO SAKURAMOTO ◽  
MAKOTO SAKAMOTO ◽  
ITSUO TAKANAMI

This paper deals with two topics concerning two-dimensional automata operating in parallel. We first investigate a relationship between the accepting powers of two-dimensional alternating finite automata (2-AFAs) and nondeterministic bottom-up pyramid cellular acceptors (NUPCAs), and show that Ω ( diameter × log diameter ) time is necessary for NUPCAs to simulate 2-AFAs. We then investigate space complexity of two-dimensional alternating Turing machines (2-ATMs) operating in small space, and show that if L (n) is a two-dimensionally space-constructible function such that lim n → ∞ L (n)/ loglog n > 1 and L (n) ≤ log n, and L′ (n) is a function satisfying L′ (n) =o (L(n)), then there exists a set accepted by some strongly L (n) space-bounded two-dimensional deterministic Turing machine, but not accepted by any weakly L′ (n) space-bounded 2-ATM, and thus there exists a rich space hierarchy for weakly S (n) space-bounded 2-ATMs with loglog n ≤ S (n) ≤ log n.


Energies ◽  
2020 ◽  
Vol 13 (16) ◽  
pp. 4041
Author(s):  
Yuanxiang Lu ◽  
Sihan Liu ◽  
Xinru Zhang ◽  
Zeyi Jiang ◽  
Dianyu E

Voids that are formed by gas injection in a packed bed play an important role in metallurgical and chemical furnaces. Herein, two-phase gas–solid flow in a two-dimensional packed bed during blast injection was simulated numerically. The results indicate that the void stability was dynamic, and the void shape and size fluctuated within a certain range. To determine the void morphology quantitatively, a probabilistic method was proposed. By statistically analyzing the white probability of each pixel in binary images at multiple times, the void boundaries that correspond to different probability ranges were obtained. The boundary that was most appropriate with the simulation result was selected and defined as the well-matched void boundary. Based on this method, the morphologies of voids that formed at different gas velocities were simulated and compared. The method can help us to express the morphological characteristics of the dynamically stable voids in a numerical simulation.


Sign in / Sign up

Export Citation Format

Share Document