A Review of Recent Techniques in Mixed-Criticality Systems

2019 ◽  
Vol 28 (07) ◽  
pp. 1930007 ◽  
Author(s):  
Hongxia Chai ◽  
Gongxuan Zhang ◽  
Jin Sun ◽  
Ahmadreza Vajdi ◽  
Jing Hua ◽  
...  

Unlike traditional embedded systems that almost have only one criticality level, many complex embedded systems nowadays are mixed-critical and are more and more widely used. There has been a lot of research on mixed-criticality (MC) systems. In this paper, we present a survey on the MC systems on these research. First, we discuss the exaltation of the schedulability of MC systems. As improving schedulability may lead to quality-of-service (QoS) reduction of MS systems. Therefore, we investigate the approaches to solve this problem. Improving QoS of MS systems may inevitably increase the energy consumption. Then, we introduce the researches that take the energy efficiency as a design requirement of MC systems. Few MC systems regard fault-tolerance as the design requirement, thus, we extensively investigate fault-tolerance of MC systems. In addition, we introduce some of the main applications for MC systems.

Author(s):  
Emad Danish ◽  
Mazin I. Alshamrani

Video streaming is expected to acquire a massive share of the global internet traffic in the near future. Meanwhile, it is expected that most of the global traffic will be carried over wireless networks. This trend translates into considerable challenges for Service Providers (SP) in terms of maintaining consumers' Quality of Experience (QoE), energy consumption, utilisation of wireless resources, and profitability. However, the majority of Radio Resource Allocation (RRA) algorithms only consider enhancing Quality of Service (QoS) and network parameters. Since this approach may end up with unsatisfied customers in the future, it is essential to develop innovative RRA algorithms that adopt a user-centric approach based on users' QoE. This chapter focus on wireless video over Critical communication systems that are inspired by QoE perceived by end users. This chapter presents a background to introduce the reader to this area, followed by a review of the related up-to-date literature.


Author(s):  
Joe Hoffert ◽  
Aniruddha Gokhale ◽  
Douglas C. Schmidt

Quality-of-service enabled publish/subscribe (pub/sub) middleware provides powerful support for scalable data dissemination. It is difficult to maintain key quality of service properties (such as reliability and latency) in dynamic environments for distributed real-time and embedded systems (such as disaster relief operations or power grids). Managing quality of service manually is often not feasible in dynamic environments due to slow response times, the complexity of managing multiple interrelated quality of service settings, and the scale of the systems being managed. For certain domains, distributed real-time and embedded systems must be able to reflect on the conditions of their environment and adapt accordingly in a bounded amount of time. This paper describes an architecture of quality of service-enabled middleware and corresponding algorithms to support specified quality of service in dynamic environments.


Author(s):  
Ioannis Papapanagiotou ◽  
Georgios S. Paschos

The present chapter contains a thorough investigation of Quality of Service, Energy Conservation and mobility in 802.11 and 802.16 standards. Interest on these two technologies arises from the fact that they are designed to cooperate offering wireless access capabilities in Next Generation Networks (NGNs). Under NGN Wireless architectures, key challenges must be taken into account: (a) Broadband technologies are based on QoS Enabled Telecommunication Services; (b) Mobile devices are battery limited. In fact, how to prolong the life time of a mobile device and minimize power usage is a very important design issue; (c) Wireless operation means that the user is expected to roam freely, which must also be taken into account. The dependability of NGN operation is obviously depended on these three features.


2020 ◽  
Vol 2020 ◽  
pp. 1-22 ◽  
Author(s):  
Wenxin Li ◽  
Qiyuan Peng ◽  
Chao Wen ◽  
Shengdong Li ◽  
Xu Yan ◽  
...  

Optimizing to increase the utilization ratio of regenerative braking energy reduces energy consumption, and can be done without increasing the deviation of train running time in one circle. The latter entails that the train timetable is upheld, which guarantees that the demand for passenger transport services is met and the quality of services in the urban rail transit system is maintained. This study proposes a multi-objective optimization model for urban railways with timetable optimization to minimize the total energy consumption of trains while maximizing the quality of service. To this end, we apply the principles and ideas of calculus to reduce the power of the velocity in the train energy consumption model. This greatly simplifies the complexity of the optimization model. Then, considering the conflicting requirements of decision-makers, weight factors are added to the objective functions to reflect decision-makers’ preferences for energy-saving and the quality of service. We adopt the nondominated sorting genetic algorithm-II (NSGA-II) to solve the proposed model. A practical case study of the Yizhuang urban railway line in Beijing is conducted to verify the effectiveness of the proposed model and evaluate the advantages of the optimal energy saving timetable (OEST) in comparison to the optimal quality of service timetable (OQOST). The results showed that the OEST reduced total energy consumption by 8.72% but increased the deviation of trains running time in one circle by 728 s. The total energy consumption was reduced by 6.09%, but there was no increase in the deviation of train running time in one circle with the OQOST.


2019 ◽  
Vol 29 (10) ◽  
pp. 2050167
Author(s):  
Xiumin Zhou ◽  
Gongxuan Zhang ◽  
Tian Wang ◽  
Mingyue Zhang ◽  
Xiji Wang ◽  
...  

Most popular scientific workflow systems can now support the deployment of tasks to the cloud. The execution of workflow on cloud has become a multi-objective scheduling in order to meet the needs of users in many aspects. Cost and makespan are considered to be the two most important objects. In addition to these, there are some other Quality-of-Service (QoS) parameters including system reliability, energy consumption and so on. Here, we focus on three objectives: cost, makespan and system reliability. In this paper, we propose a Multi-objective Evolutionary Algorithm on the Cloud (MEAC). In the algorithm, we design some novel schemes including problem-specific encoding and also evolutionary operations, such as crossover and mutation. Simulations on real-world and random workflows are conducted and the results show that MEAC can get on average about 5% higher hypervolume value than some other workflow scheduling algorithms.


2012 ◽  
Vol 14 (6) ◽  
pp. 583-595 ◽  
Author(s):  
Juan Jimenez ◽  
Rafael Estepa ◽  
Antonio Estepa ◽  
Francisco R. Rubio ◽  
Fabio Gómez-Estern

DYNA ◽  
2017 ◽  
Vol 84 (202) ◽  
pp. 120-128 ◽  
Author(s):  
Juan Camilo Correa-Chica ◽  
Juan Felipe Botero-Vega ◽  
Natalia Gaviria-Gómez

Dentro de los esquemas de comunicación de redes inalámbricas de área corporal (WBAN), se encuentran los protocolos de capa cruzada, constituidos en una novedosa opción para alcanzar un balance efectivo entre consumo eficiente de energía y métricas de desempeño. En el presente trabajo, evaluamos el desempeño de una estrategia de capa cruzada al compararla contra los protocolos del estándar IEEE802.15.4 en una WBAN. Se evaluó el desempeño de ambas estrategias empleando una simulación de redes WBAN. Luego se ejecutó una comparación estadística y se encontró que la estrategia de capa cruzada ofrece un mejor desempeño con respecto a la compensación entre consumo eficiente de energía y algunas métricas de desempeño en nuestra WBAN. Observamos que en general, la estrategia de capa cruzada supera a ambos modos del estándar IEEE802.15.4 (ranurado y no-ranurado) con respecto a consumo eficiente de energía, retraso extremo a extremo, tasa de pérdida de paquetes y goodput.


Sign in / Sign up

Export Citation Format

Share Document