An Efficient Interface Circuit for Miniature Piezoelectric Energy Harvesting with P-SSHC

2019 ◽  
Vol 29 (08) ◽  
pp. 2020004
Author(s):  
Lianxi Liu ◽  
Yu Shang ◽  
Jiangwei Cheng ◽  
Zhangming Zhu

A miniature and high-efficiency interface circuit based on parallel synchronous switch harvesting on capacitors (P-SSHC) for piezoelectric energy harvesting (PEH) is proposed in this paper. This interface circuit consists of a two-stage synchronous rectifier and the P-SSHC circuit. The two-stage synchronous rectifier, composed of a negative voltage converter (NVC) and an active diode (AD), achieves higher efficiency compared with the full-bridge rectifier (FBR). In addition, the two-stage synchronous rectifier detects the zero-crossing moment of the input current; therefore, an extra current zero-crossing detection circuit is eliminated, which simplifies the structure of the interface circuit, reduces power consumption and improves peak converting efficiency. The P-SSHC circuit aims to improve the power extraction capability of the rectifier. The P-SSHC achieves considerable voltage flipping efficiency with very small volume compared to the parallel synchronized switch harvesting on inductor (P-SSHI), which is more suitable for volume sensitive applications. The proposed interface circuit is designed in SMIC 0.35[Formula: see text][Formula: see text]m CMOS process. Simulation results show that it achieves a [Formula: see text] output power improvement compared with FBR for the case of a 3.4[Formula: see text]V open-circuit voltage, the voltage flipping efficiency is as high as 83.6% and the peak power converting efficiency is up to 91.5%. The overall volume of the capacitors used in this paper is only 0.6[Formula: see text]mm3, which is much smaller than the inductor used by conventional P-SSHI interface circuit.

Electronics ◽  
2019 ◽  
Vol 8 (1) ◽  
pp. 66 ◽  
Author(s):  
Amad Ud Din ◽  
Muhammad Kamran ◽  
Waqar Mahmood ◽  
Khursheed Aurangzeb ◽  
Abdulaziz Saud Altamrah ◽  
...  

In this research work, we investigated a dual switch (DS) active rectifier for the piezoelectric (PE) energy scavenging system. In the proposed DS active rectifier configuration, two extra switches are shunted across the PE transducer which helps the PE transducer’s capacitor in charging and discharging which results in maximum power extraction from the PE transducer. Moreover, in the proposed rectifier configuration comparator controlled active diodes are used instead of conventional/passive diodes to minimize the threshold voltage V T H drop. The proposed DS active rectifier design is fabricated in a 1-poly 6-metal 180-nm standard CMOS process. The simulation and measured results of the proposed DS active rectifier design have the better power conversion efficiency (PCE) of 91.5 %, which definitely helps in extracting more power than the conventional full bridge rectifier (FBR).


Sign in / Sign up

Export Citation Format

Share Document