Optimal Coordination of PSS and SSSC Controllers in Power System Using Ant Colony Optimization Algorithm

Author(s):  
Mehrdad Ahmadi Kamarposhti ◽  
Ilhami Colak ◽  
Celestine Iwendi ◽  
Shahab S. Band ◽  
Ebuka Ibeke

Volatility leads to disruption in synchronism between generators of a continuous system. The frequency of the volatility is usually between a few tenths of Hz to several Hz. This volatility is sometimes divided into two types, local and interregional. Local volatility is the low-frequency volatility of a power plant unit or units of a power plant relative to the grid whereas interregional volatility is the volatility of the units of one area relative to the units of another area. The worst kind of low-frequency volatility occurs when the power system in a region has a short three-phase connection to the earth, creating a complete instability of the grid and operating protective systems. One of the ways to improve the dynamic stability and steady-state of the power system is to use power system stabilizers and FACTS devices in the system. In this paper, the stabilization of the power system stabilizers (PSSs) and SSSC is done using the ant colony algorithm. Studies on a four-machine system with the three-phase error were performed in two scenarios and finally compared with the PSO method. The simulation results show that the proposed method produced more accurate performance.

2010 ◽  
Vol 26-28 ◽  
pp. 620-624 ◽  
Author(s):  
Zhan Wei Du ◽  
Yong Jian Yang ◽  
Yong Xiong Sun ◽  
Chi Jun Zhang ◽  
Tuan Liang Li

This paper presents a modified Ant Colony Algorithm(ACA) called route-update ant colony algorithm(RUACA). The research attention is focused on improving the computational efficiency in the TSP problem. A new impact factor is introduced and proved to be effective for reducing the convergence time in the RUACA performance. In order to assess the RUACA performance, a simply supported data set of cities, which was taken as the source data in previous research using traditional ACA and genetic algorithm(GA), is chosen as a benchmark case study. Comparing with the ACA and GA results, it is shown that the presented RUACA has successfully solved the TSP problem. The results of the proposed algorithm are found to be satisfactory.


2021 ◽  
Vol 5 (2) ◽  
pp. 11-19
Author(s):  
Yadgar Sirwan Abdulrahman

As information technology grows, network security is a significant issue and challenge. The intrusion detection system (IDS) is known as the main component of a secure network. An IDS can be considered a set of tools to help identify and report abnormal activities in the network. In this study, we use data mining of a new framework using fuzzy tools and combine it with the ant colony optimization algorithm (ACOR) to overcome the shortcomings of the k-means clustering method and improve detection accuracy in IDSs. Introduced IDS. The ACOR algorithm is recognized as a fast and accurate meta-method for optimization problems. We combine the improved ACOR with the fuzzy c-means algorithm to achieve efficient clustering and intrusion detection. Our proposed hybrid algorithm is reviewed with the NSL-KDD dataset and the ISCX 2012 dataset using various criteria. For further evaluation, our method is compared to other tasks, and the results are compared show that the proposed algorithm has performed better in all cases.


Author(s):  
Yueping Chen ◽  
Naiqi Shang

Abstract Coordinate measuring machines (CMMs) play an important role in modern manufacturing and inspection technologies. However, the inspection process of a CMM is recognized as time-consuming work. The low efficiency of coordinate measuring machines has given rise to new inspection strategies and methods, including path optimization. This study describes the optimization of an inspection path on free-form surfaces using three different algorithms: an ant colony optimization algorithm, a genetic algorithm, and a particle swarm optimization algorithm. The optimized sequence of sampling points is obtained in MATLAB R2020b software and tested on a Leitz Reference HP Bridge Type Coordinate Measuring Machine produced by HEXAGON. This study compares the performance of the three algorithms in theoretical and practical conditions. The results demonstrate that the use of the three algorithms can result in a collision-free path being found automatically and reduce the inspection time. However, owing to the different optimization methodologies, the optimized processes and optimized times of the three algorithms, as well as the optimized paths, are different. The results indicate that the ant colony algorithm has better performance for the path optimization of free-form surfaces.


2021 ◽  
Vol 68 (3) ◽  
pp. 1871-1882
Author(s):  
Jianxin Zhu ◽  
Hongfei Wu ◽  
Junyu Chen ◽  
Lin Li ◽  
Ming Hua ◽  
...  

2014 ◽  
Vol 548-549 ◽  
pp. 1213-1216
Author(s):  
Wang Rui ◽  
Zai Tang Wang

We research on application of ant colony optimization. In order to avoid the stagnation and slow convergence speed of ant colony algorithm, this paper propose the multiple ant colony optimization algorithm based on the equilibrium of distribution. The simulation results show that the optimal algorithm can have better balance in reducing stagnation and improving the convergence.


Sign in / Sign up

Export Citation Format

Share Document