NOISE-ENHANCED PROPAGATION IN A DISSIPATIVE CHAIN OF TRIGGERS

2002 ◽  
Vol 12 (03) ◽  
pp. 629-633 ◽  
Author(s):  
S. MORFU ◽  
J. C. COMTE ◽  
J. M. BILBAULT ◽  
P. MARQUIÉ

We study the influence of spatiotemporal noise on the propagation of square waves in an electrical dissipative chain of triggers. By numerical simulation, we show that noise plays an active role in improving signal transmission. Using the Signal to Noise Ratio at each cell, we estimate the propagation length. It appears that there is an optimum amount of noise that maximizes this length. This specific case of stochastic resonance shows that noise enhances propagation.

1994 ◽  
Vol 04 (02) ◽  
pp. 441-446 ◽  
Author(s):  
V.S. ANISHCHENKO ◽  
M.A. SAFONOVA ◽  
L.O. CHUA

Using numerical simulation, we establish the possibility of realizing the stochastic resonance (SR) phenomenon in Chua’s circuit when it is excited by either an amplitude-modulated or a frequency-modulated signal. It is shown that the application of a frequency-modulated signal to a Chua’s circuit operating in a regime of dynamical intermittency is preferable over an amplitude-modulated signal from the point of view of minimizing the signal distortion and maximizing the signal-to-noise ratio (SNR).


2021 ◽  
Vol 3 (4) ◽  
Author(s):  
F. Naha Nzoupe ◽  
Alain M. Dikandé

AbstractThe occurrence of stochastic resonance in bistable systems undergoing anomalous diffusions, which arise from density-dependent fluctuations, is investigated with an emphasis on the analytical formulation of the problem as well as a possible analytical derivation of key quantifiers of stochastic resonance. The nonlinear Fokker–Planck equation describing the system dynamics, together with the corresponding Ito–Langevin equation, is formulated. In the linear response regime, analytical expressions of the spectral amplification, of the signal-to-noise ratio and of the hysteresis loop area are derived as quantifiers of stochastic resonance. These quantifiers are found to be strongly dependent on the parameters controlling the type of diffusion; in particular, the peak characterizing the signal-to-noise ratio occurs only in close ranges of parameters. Results introduce the relevant information that, taking into consideration the interactions of anomalous diffusive systems with a periodic signal, can provide a better understanding of the physics of stochastic resonance in bistable systems driven by periodic forces.


2017 ◽  
Vol 88 ◽  
pp. 340-347
Author(s):  
Sheng Wang ◽  
Hang Li ◽  
Chao Cao ◽  
Yang Wu ◽  
Heyong Huo ◽  
...  

2002 ◽  
Vol 02 (03) ◽  
pp. L147-L155 ◽  
Author(s):  
PETER MAKRA ◽  
ZOLTAN GINGL ◽  
LASZLO B. KISH

It has recently been reported that in some systems showing stochastic resonance, the signal-to-noise ratio (SNR) at the output can significantly exceed that at the input; in other words, SNR gain is possible. We took two such systems, the non-dynamical Schmitt trigger and the dynamical double wellpotential, and using numerical and mixed-signal simulation techniques, we examined what SNR gains these systems can provide. In the non-linear response limit, we obtained SNR gains much greater than unity for both systems. In addition to the classical narrow-band SNR definition, we also measured the ratio of the total power of the signal to the power of the noise part, and it showed even better signal improvement. Here we present a brief review of our results, and scrutinise, for both the Schmitt-trigger and the double well potential, the behaviour of the SNR gain by stochastic resonance for different signal amplitudes and duty cycles. We also discuss the mechanism of providing gains greater than unity.


1993 ◽  
Vol 48 (6) ◽  
pp. 4862-4862 ◽  
Author(s):  
Gong De-chun ◽  
Hu Gang ◽  
Wen Xiao-dong ◽  
Yang Chun-yan ◽  
Qin Guang-rong ◽  
...  

1992 ◽  
Vol 46 (6) ◽  
pp. 3243-3249 ◽  
Author(s):  
Gong De-chun ◽  
Hu Gang ◽  
Wen Xiao-dong ◽  
Yang Chun-yan ◽  
Qin Guang-rong ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document