optimum amount
Recently Published Documents


TOTAL DOCUMENTS

234
(FIVE YEARS 59)

H-INDEX

16
(FIVE YEARS 3)

2022 ◽  
Author(s):  
khashayar vaezi ◽  
Ghasem Asadpour

Abstract ABSTRACT The study reports on the preparation of nanocrystalline cellulose from waste papers (WPNCC), as an environmental friendly approach of source material and investigation of their effects on the morphological, mechanical and barrier properties of the Hydroxypropyl methylcellulose/Cationic starch (HPMC/CS) nanocomposites. HCl hydrolysis followed by alkali treatment and deinking of the fibers resulted in the production of WPNCC. The TEM results confirmed the rod like shape of WPNCC; the average diameter was 22± 7 nanometers and the length was 125± 25 nanometers. The hydrolysis yield was 65% with high crystallinity index of 79.6%. The results of X-ray diffraction confirmed the successfully production of WPNCC and their effective presence in the HPMC/CS matrix. The homogeneity of WPNCC dispersion in the polymer matrix was approved by FESEM analysis. The WPNCC also did not affect the nanocomposites optical clarity. The optimum amount of 9 wt% WPNCC, showed the highest barrier, mechanical and biodegradablility properties.


2021 ◽  
Vol 8 (12) ◽  
pp. 125901
Author(s):  
Xiaodong Jia ◽  
Shuo Mao ◽  
Lin Tian ◽  
Shujiang Chen ◽  
Guohua Li ◽  
...  

Abstract Herein, magnesium metatitanate (MgTiO3) ceramics were synthesised using recycled magnesia-hercynite (MH) bricks as the raw materials to achieve solid waste reusing of cement kiln refractories. The recycled MH materials were mixed with anatase TiO2 to investigate the effect of addition of doped B2O3 during the synthesis of MgTiO3 ceramics at 1400 °C. Phase compositions and microstructural studies were performed using x-ray diffraction (XRD) and scanning electron microscope (SEM), respectively. In addition, energy-dispersive spectroscopy (EDS) was conducted and the dielectric properties of the samples were studied. Results show that the addition of B2O3 can promote sintering, improve shrinkage, promote densification, stabilise MgTiO3 lattice, and inhibit the formation of MgTiO3. In addition, the presence of appropriate amount of B2O3 can accelerate the material diffusion and result in grain growth through the formation of intercrystalline liquid phase. Results also suggest that an increase in dielectric constant results in a decrease in dielectric loss. It was concluded that 2 wt% was the optimum amount of B2O3 required to obtain the most favourable synthesis rate of MgTiO3 (98.2%). The samples exhibited a maximum density of 3.69 g·cm−3 and excellent microwave dielectric properties at ε r = 18.28 and tanδ = 0.086.


2021 ◽  
Author(s):  
Pavani Cherukupally ◽  
Boyuan Hao ◽  
Zhongshen Zhang ◽  
Daryl R Williams

Currently, freshwater scarcity is a global challenge that is threatening four billion people across the world. To satisfy people’s increasing freshwater demand, harvesting atmospheric water from the air could be an alternative way. This work developed copolymer P(NIPAM-co-15%BzDMA) hydrogels to harvest atmospheric water vapor. Two methods were investigated to improve its adsorption performance: decreasing synthesis temperature below the LCST and copolymerizing with the optimum amount of quaternary ammonium salt (QAS). We found these two methods can effectively improve the water vapor uptake. After copolymerizing NIPAM with 15% QAS at 20°C, the water vapor uptake could be increased by almost 20% to 232 mg/g at 20°C and P/P0 of 0.75 compared with pure PNIPAM prepared at 60°C (194 mg/g). The significant increase can be attributed to the more uniform porous structure and the hygroscopicity of QAS. After coating PNIPAM onto the PESPU sponge skeleton, the PESPU-PNIPAM_60 could adsorb 180 mg/g gas water at 20°C and P/P0 of 0.75, and the modified sponges inherit the switchable wettability from PNIPAM. This research provides polymer processing parameters and their character for harvesting water vapor from the air with hydrogels.


2021 ◽  
Vol 52 (4) ◽  
pp. 949-959
Author(s):  
Z. K. Rasheed

Horizontal porous pipe method is one of the most efficient systems of irrigation in arid and semi-arid areas.  The main aim of this study is to simulate the subsurface horizontal porous pipe irrigation under different conditions.  By this method of irrigation, an optimum amount of water is reached to the crop.  Moreover, it saves more water than the other irrigation systems.  Simulation models by HYDRUS/2D  are described the distribution of wetting shapes in two different soil textures through the system of United States Department of Agriculture, USDA, namely as loam and silt soils.  The system is designed for three diameters of 6, 7, and 8 cm installed at 15, 20, and 25 cm below the soil surface under three application heads of 25, 50, and 75 cm.  Horizontal and vertical advance of the wetting front shapes in loam are greater than silt soil.  The numerical values of horizontal and vertical advance are compared with those of predicted by the formulas, showing that average relative error values not more than 2 %.  This indicated that the formulas may be used as a tool for designing and investigating the subsurface horizontal porous pipe irrigation system.  


Signals ◽  
2021 ◽  
Vol 2 (3) ◽  
pp. 527-539
Author(s):  
Mahdi Rezapour ◽  
Khaled Ksaibati

Vulnerable traffic users, such as bikers and pedestrians, account for a significant number of fatalities on the roadways. Extensive research has been conducted in the literature review to identify factors to those crashes. Studying factors to those crashes is especially important in the Western state in the US, due to one of the highest fatality rates in the nation and its unique geographic conditions. The first step in identifying factors to the severity of cyclist crashes is to find the underlying factors to that type of crash, while accounting for the heterogeneity in the dataset. Various techniques such as mixed parameter or mixed effect models have been employed in the literature to account for the heterogeneity of the dataset. In the mixed effect model, often the random effect parameter has been assigned subjectively, and based on some attributes and engineering intuitions. Those assignments are expected to account for the heterogeneity in the dataset and enhancement of the model fit. However, a question might arise whether those factors could account for an optimum amount of the heterogeneity in the dataset. A more reasonable way might be to let the algorithm such as the finite mixture model (FMM) to identify those clusters based on parameters of the Gaussian model, means and covariance matrices of the dataset, and allocate each observation to the related clusters. Thus, in this study, to capture optimum amount of heterogeneity, first we implemented the finite mixture model in the context of maximum likelihood, due the label switching issue of the method in the context of the Bayesian method. After assignment of the parameters to the observation, the main method of Hamiltonian Monte Carlo (HMC) with random effect was implemented. The results highlighted a significant improvement in the model fit, in terms of Widely Applicable Information Criterion (WAIC). The results of this study highlighted factors such as older biker age, increased number of lanes, nighttime travelling, increased posted speed limit and driving while under emotional conditions are some factors contributing to an increased severity of bikers’ crash severity. Extensive discussion has been made regarding the methodological algorithms and model parameters estimations.


2021 ◽  
Author(s):  
Wolf Reinhardt

Abstract An important element in evolving Section III of the ASME Code is the re-examination of Code rules to identify the potential for efficiencies. The present paper looks at the rules for reinforcement of openings. The present Code rules require the area of material removed to create the opening (up to the design thickness) to be added around the opening with certain limits on the distance from the opening. Past studies have suggested that the present rules may add more material than needed to maintain the strength of the vessel in some cases. The optimum amount of reinforcement is therefore postulated to be determined by the criterion that the limit pressure should not be reduced excessively relative to the limit pressure of the vessel in the absence of the opening. Limit analysis is performed to derive possible rules on the amount and distribution of around an opening. Options for alternative rules for reinforcement of openings, and restrictions on the present Code rules, are proposed.


Sign in / Sign up

Export Citation Format

Share Document