Decoding Digital Information from the Cascaded Heterogeneous Chaotic Systems

2003 ◽  
Vol 13 (06) ◽  
pp. 1599-1608 ◽  
Author(s):  
Chao Tao ◽  
Gonghuan Du ◽  
Yu Zhang

In this paper, we propose a new approach to breaking down chaotic communication scheme by attacking its encryption keys. A remarkable advancement is that it can decode the hidden message exactly. This makes it become possible to break down some cascaded chaotic communication systems. We also decode digital information from the cascaded heterogeneous chaotic communication system and give the simulation results.

1996 ◽  
Vol 06 (12a) ◽  
pp. 2361-2374 ◽  
Author(s):  
J. M. LIPTON ◽  
K. P. DABKE

Spread spectrum communication systems based on chaotic carrier sequences are examined for their security and robustness in the presence of noise and other interferences. Both discrete and continuous time chaotic carriers are examined and methods for determining the effectiveness of such carriers are discussed. An experimental implementation of a chaotic communication system was built and tested, and then compared with theory and the results from simulations.


2009 ◽  
Vol 19 (12) ◽  
pp. 4217-4226 ◽  
Author(s):  
R. TREJO-GUERRA ◽  
E. TLELO-CUAUTLE ◽  
C. CRUZ-HERNÁNDEZ ◽  
C. SÁNCHEZ–LÓPEZ

This work shows the experimental implementation of a chaotic communication system based on two Chua's oscillators which are synchronized by Hamiltonian forms and observer approach. The chaotic communication scheme is realized by using the commercially available positive-type second generation current conveyor (CCII+), which is included into the AD844 device. As a result, experimental measurements are provided to demonstrate the suitability of the CCII+ to implement chaotic communication systems.


Author(s):  
Kamal Hamid ◽  
Nadim Chahine

Wireless communications became one of the most widespread means for transferring information. Speed and reliability in transferring the piece of information are considered one of the most important requirements in communication systems in general. Moreover, Quality and reliability in any system are considered the most important criterion of the efficiency of this system in doing the task it is designed to do and its ability for satisfactory performance for a certain period of time, Therefore, we need fault tree analysis in these systems in order to determine how to detect an error or defect when happening in communication system and what are the possibilities that make this error happens. This research deals with studying TETRA system components, studying the physical layer in theory and practice, as well as studying fault tree analysis in this system, and later benefit from this study in proposing improvements to the structure of the system, which led to improve gain in Link Budget. A simulation and test have been done using MATLAB, where simulation results have shown that the built fault tree is able to detect the system’s work by 82.4%.


2003 ◽  
Vol 13 (04) ◽  
pp. 963-972 ◽  
Author(s):  
BAO-YUN WANG ◽  
T. W. S. CHOW ◽  
K. T. NG

In this article the identification of AR system driven by chaotic sequences is addressed. This problem emerges in chaotic communication system, in which chaos-modulated signal passes through a channel described as an AR system. Two adaptive algorithms are presented to tackle this problem. Compared with the existing algorithms such as MPSV and MNPE, the proposed algorithms have very low computational complexities and can be used to track the system parameters in a slowly time-variant environment. The obtained simulation results illustrate that the proposed scheme can offer a better estimation accuracy than the conventional typical method in the high SNR case.


2008 ◽  
Vol 22 (24) ◽  
pp. 4175-4188 ◽  
Author(s):  
YANG TANG ◽  
JIAN-AN FANG ◽  
LIANG CHEN

In this paper, a simple and systematic adaptive feedback method for achieving lag projective stochastic perturbed synchronization of a new four-wing chaotic system with unknown parameters is presented. Moreover, a secure communication scheme based on the adaptive feedback lag projective synchronization of the new chaotic systems with stochastic perturbation and unknown parameters is presented. The simulation results show the feasibility of the proposed method.


2012 ◽  
Vol 2012 ◽  
pp. 1-14 ◽  
Author(s):  
Xianqing Chen ◽  
Lenan Wu

We introduce the extended binary phase shift keying (EBPSK) communication system which is different from traditional communication systems by using a special impacting filter (SIF) for demodulation. The joint detection technique is applied at the demodulator side in order to improve the performance of the system under intersymbol interference (ISI). The main advantage of the joint detection technique, when compared to conventional threshold approaches, lies in its ability to use the amplitude and the correlation between neighboring bits, thus significantly improving performance, with low complexity. Moreover, we concentrate not only on increasing the bit rate of the system, but also on designing a bandwidth efficient communication system. Simulation results show that this new approach significantly outperforms the conventional method of using threshold decision by from 3.5 to 5 dB. The new system also occupies a narrower bandwidth. So joint detection is an effective method for EBPSK demodulation under ISI.


2015 ◽  
Vol 2015 ◽  
pp. 1-7 ◽  
Author(s):  
Wei-Der Chang ◽  
Shun-Peng Shih ◽  
Chih-Yung Chen

This paper develops a new digital communication scheme based on using a unified chaotic system and an adaptive state observer. The proposed communication system basically consists of five important elements: signal modulation, chaotic encryption, adaptive state observer, chaotic decryption, and signal demodulation. A sequence of digital signals will be delivered from the transmitter to the receiver through a public channel. It is rather reasonable that if the number of signals delivered on the public channel is fewer, then the security of such communication system is more guaranteed. Therefore, in order to achieve this purpose, a state observer will be designed and its function is to estimate full system states only by using the system output signals. In this way, the signals delivered on the public channel can be reduced mostly. According to these estimated state signals, the original digital sequences are then retrieved completely. Finally, experiment results are provided to verify the applicability of the proposed communication system.


2013 ◽  
Vol 411-414 ◽  
pp. 749-752
Author(s):  
Ming Hui Tang ◽  
Mi Li ◽  
Yan Li ◽  
Jia Chen Ding ◽  
Guo Liang Xu

With the development of satellite laser communication, modulation scheme has been the key technique for the modulation subsystem. The performance in terms of bite-error rate of OOK, 2DPSK, QDPSK used in the downlink of the ground-to-satellite laser communication systems are compared with the consideration of the combined effects of both intensity scintillation and detector noise. Simulation results are given and the advantages and disadvantages of the three modulation schemes are also studied. The design of the downlink of ground-to-satellite laser communication system can benefit from this work.


2013 ◽  
Vol 846-847 ◽  
pp. 651-654
Author(s):  
Ya Dan Zheng ◽  
Jian Bo Li ◽  
Yong Luo ◽  
Ming Ke Dong ◽  
Jian Jun Wu

In this paper, a hybrid HARQ scheme was proposed by combing forced retransmission and traditional HARQ together, after analyzing the characteristics of satellite channel and the problem encountered when utilizing HARQ scheme in GEO satellite communication system. The forced retransmission can make a packet be correctly decoded more quickly and shorten the waiting delay. Meanwhile, to balance the delay and throughput, the proper parameters were given for the proposed hybrid scheme. Simulation results show that the proposed scheme performs well at decreasing the waiting delay, especially when SNR is low. The conclusion can be drawn that the proposed scheme can improve the HARQ performance in GEO satellite communication systems.


2012 ◽  
Vol 461 ◽  
pp. 164-168
Author(s):  
Zhen Chao Wang ◽  
Shi Bing Zhang ◽  
Yuan Yuan Liu

This paper proposes a new chaotic communication scheme which is developed from Differential Chaos Shift Keying (DCSK), named reversed-phase overlay DCSK. Different from DCSK, at the receiver of the improved scheme the first and the second half-symbol signals within a code period are reversed-phase overlapped before the correlation operation. Both the theoretical analysis and the simulation results show that the proposed scheme can effectively suppress the noise and improve the BER performance of DCSK if the channel noise in the first half of a code period and the second is positively correlated. The proposed scheme can be applied to the communication systems suffering with colored noise, such as Low-voltage Power Line Communication(L-PLC) system


Sign in / Sign up

Export Citation Format

Share Document