Spatiotemporal Distributions of Unstable Periodic Orbits in Noisy Coupled Chaotic Systems

2003 ◽  
Vol 13 (09) ◽  
pp. 2673-2680
Author(s):  
Kevin Dolan ◽  
Annette Witt ◽  
Jürgen Kurths ◽  
Frank Moss

Techniques for detecting encounters with unstable periodic orbits (UPOs) have been very successful in the analysis of noisy, experimental time series. We present here a technique for applying the topological recurrence method of UPO detection to spatially extended systems. This approach is tested on a network of diffusively coupled chaotic Rössler systems, with both symmetric and asymmetric coupling schemes. We demonstrate how to extract encounters with UPOs from such data, and present a preliminary method for analyzing the results and extracting dynamical information from the data, based on a linear correlation analysis of the spatiotemporal occurrence of encounters with these low period UPOs. This analysis can provide an insight into the coupling structure of such a spatially extended system.

Author(s):  
Z. Al-Zamel ◽  
B. F. Feeny

Abstract Unstable periodic orbits of the saddle type are often extracted from chaotic sets. We use the recurrence method of extracting segments of the chaotic data to approximate the true unstable periodic orbit. Then nearby trajectories are then examined to obtain the dynamics local to the extracted orbit, in terms of an affine map. The affine map is then used to estimate the true orbit. Accuracy is evaluated in examples including well known maps and the Duffing oscillator.


2014 ◽  
Vol 24 (06) ◽  
pp. 1450077 ◽  
Author(s):  
Matthew A. Morena ◽  
Kevin M. Short

We report on the tendency of chaotic systems to be controlled onto their unstable periodic orbits in such a way that these orbits are stabilized. The resulting orbits are known as cupolets and collectively provide a rich source of qualitative information on the associated chaotic dynamical system. We show that pairs of interacting cupolets may be induced into a state of mutually sustained stabilization that requires no external intervention in order to be maintained and is thus considered bound or entangled. A number of properties of this sort of entanglement are discussed. For instance, should the interaction be disturbed, then the chaotic entanglement would be broken. Based on certain properties of chaotic systems and on examples which we present, there is further potential for chaotic entanglement to be naturally occurring. A discussion of this and of the implications of chaotic entanglement in future research investigations is also presented.


2021 ◽  
Vol 427 ◽  
pp. 133009
Author(s):  
Mayur V. Lakshmi ◽  
Giovanni Fantuzzi ◽  
Sergei I. Chernyshenko ◽  
Davide Lasagna

1999 ◽  
Vol 38 (Part 1, No. 6A) ◽  
pp. 3784-3792
Author(s):  
Donghak Choi ◽  
Nobuko Fuchikami ◽  
Eriko Hirokami ◽  
Shunya Ishioka ◽  
Masayoshi Naito

Sign in / Sign up

Export Citation Format

Share Document