spatially extended systems
Recently Published Documents


TOTAL DOCUMENTS

120
(FIVE YEARS 14)

H-INDEX

21
(FIVE YEARS 2)

2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Cheng Ma ◽  
Gyorgy Korniss ◽  
Boleslaw K. Szymanski ◽  
Jianxi Gao

AbstractMany systems may switch to an undesired state due to internal failures or external perturbations, of which critical transitions toward degraded ecosystem states are prominent examples. Resilience restoration focuses on the ability of spatially-extended systems and the required time to recover to their desired states under stochastic environmental conditions. The difficulty is rooted in the lack of mathematical tools to analyze systems with high dimensionality, nonlinearity, and stochastic effects. Here we show that nucleation theory can be employed to advance resilience restoration in spatially-embedded ecological systems. We find that systems may exhibit single-cluster or multi-cluster phases depending on their sizes and noise strengths. We also discover a scaling law governing the restoration time for arbitrary system sizes and noise strengths in two-dimensional systems. This approach is not limited to ecosystems and has applications in various dynamical systems, from biology to infrastructural systems.


Author(s):  
Umberto Maria Tomasini ◽  
Valerio Lucarini

AbstractThe goal of response theory, in each of its many statistical mechanical formulations, is to predict the perturbed response of a system from the knowledge of the unperturbed state and of the applied perturbation. A new recent angle on the problem focuses on providing a method to perform predictions of the change in one observable of the system using the change in a second observable as a surrogate for the actual forcing. Such a viewpoint tries to address the very relevant problem of causal links within complex system when only incomplete information is available. We present here a method for quantifying and ranking the predictive ability of observables and use it to investigate the response of a paradigmatic spatially extended system, the Lorenz ’96 model. We perturb locally the system and we then study to what extent a given local observable can predict the behaviour of a separate local observable. We show that this approach can reveal insights on the way a signal propagates inside the system. We also show that the procedure becomes more efficient if one considers multiple acting forcings and, correspondingly, multiple observables as predictors of the observable of interest.


PLoS ONE ◽  
2020 ◽  
Vol 15 (12) ◽  
pp. e0242715
Author(s):  
Rikkert Hindriks

Measurements on physical systems result from the systems’ activity being converted into sensor measurements by a forward model. In a number of cases, inversion of the forward model is extremely sensitive to perturbations such as sensor noise or numerical errors in the forward model. Regularization is then required, which introduces bias in the reconstruction of the systems’ activity. One domain in which this is particularly problematic is the reconstruction of interactions in spatially-extended complex systems such as the human brain. Brain interactions can be reconstructed from non-invasive measurements such as electroencephalography (EEG) or magnetoencephalography (MEG), whose forward models are linear and instantaneous, but have large null-spaces and high condition numbers. This leads to incomplete unmixing of the forward models and hence to spurious interactions. This motivated the development of interaction measures that are exclusively sensitive to lagged, i.e. delayed interactions. The drawback of such measures is that they only detect interactions that have sufficiently large lags and this introduces bias in reconstructed brain networks. We introduce three estimators for linear interactions in spatially-extended systems that are uniformly sensitive to all lags. We derive some basic properties of and relationships between the estimators and evaluate their performance using numerical simulations from a simple benchmark model.


2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Alexander McDonald ◽  
Aashish A. Clerk

Abstract Non-Hermitian systems exhibit markedly different phenomena than their conventional Hermitian counterparts. Several such features, such as the non-Hermitian skin effect, are only present in spatially extended systems. Potential applications of these effects in many-mode systems however remains largely unexplored. Here, we study how unique features of non-Hermitian lattice systems can be harnessed to improve Hamiltonian parameter estimation in a fully quantum setting. While the quintessential non-Hermitian skin effect does not provide any distinct advantage, alternate effects yield dramatic enhancements. We show that certain asymmetric non-Hermitian tight-binding models with a $${{\mathbb{Z}}}_{2}$$ Z 2 symmetry yield a pronounced sensing advantage: the quantum Fisher information per photon increases exponentially with system size. We find that these advantages persist in regimes where non-Markovian and non-perturbative effects become important. Our setup is directly compatible with a variety of quantum optical and superconducting circuit platforms, and already yields strong enhancements with as few as three lattice sites.


2020 ◽  
Vol 6 (9) ◽  
pp. eaay8020 ◽  
Author(s):  
Zhiwei Xu ◽  
Joseph A. Mason ◽  
Chi Xu ◽  
Shuangwen Yi ◽  
Sebastian Bathiany ◽  
...  

Dune systems can have alternative stable states that coexist under certain environmental conditions: a vegetated, stabilized state and a bare active state. This behavior implies the possibility of abrupt transitions from one state to another in response to gradual environmental change. Here, we synthesize stratigraphic records covering 12,000 years of dynamics of this system at 144 localities across three dune fields in northern China. We find side-by-side coexistence of active and stabilized states, and occasional sharp shifts in time between those contrasting states. Those shifts occur asynchronously despite the fact that the entire landscape has been subject to the same gradual changes in monsoon rainfall and other conditions. At larger scale, the spatial heterogeneity in dune dynamics averages out to produce relatively smooth change. However, our results do show different paths of recovery and collapse of vegetation at system-wide scales, implying that hysteretic behavior occurs in spatially extended systems.


Sign in / Sign up

Export Citation Format

Share Document