UNCONVENTIONAL INVERTIBLE BEHAVIORS IN REVERSIBLE ONE-DIMENSIONAL CELLULAR AUTOMATA

2008 ◽  
Vol 18 (12) ◽  
pp. 3625-3632
Author(s):  
JUAN CARLOS SECK TUOH MORA ◽  
MANUEL GONZÁLEZ HERNÁNDEZ ◽  
GENARO JUÁREZ MARTÍNEZ ◽  
SERGIO V. CHAPA VERGARA ◽  
HAROLD V. McINTOSH

Reversible cellular automata are discrete invertible dynamical systems determined by local interactions among their components. For the one-dimensional case, there are classical references providing a complete characterization based on combinatorial properties. Using these results and the simulation of every automaton by another with neighborhood size 2, this paper describes other types of invertible behaviors embedded in these systems different from the classical one observed in the temporal evolution. In particular, spatial reversibility and diagonal surjectivity are studied, and the generation of macrocells in the evolution space is analyzed.

2003 ◽  
Vol 14 (03) ◽  
pp. 379-395 ◽  
Author(s):  
JUAN CARLOS SECK TUOH MORA ◽  
SERGIO V. CHAPA VERGARA ◽  
GENARO JUÁREZ MARTÍNEZ ◽  
HAROLD V. McINTOSH

Reversible cellular automata are invertible dynamical systems characterized by discreteness, determinism and local interaction. This article studies the local behavior of reversible one-dimensional cellular automata by means of the spectral properties of their connectivity matrices. We use the transformation of every one-dimensional cellular automaton to another of neighborhood size 2 to generalize the results exposed in this paper. In particular we prove that the connectivity matrices have a single positive eigenvalue equal to 1; based on this result we also prove the idempotent behavior of these matrices. The significance of this property lies in the implementation of a matrix technique for detecting whether a one-dimensional cellular automaton is reversible or not. In particular, we present a procedure using the eigenvectors of these matrices to find the inverse rule of a given reversible one-dimensional cellular automaton. Finally illustrative examples are provided.


1997 ◽  
Vol 07 (07) ◽  
pp. 1451-1496 ◽  
Author(s):  
André Barbé

This paper considers three-dimensional coarse-graining invariant orbits for two-dimensional linear cellular automata over a finite field, as a nontrivial extension of the two-dimensional coarse-graining invariant orbits for one-dimensional CA that were studied in an earlier paper. These orbits can be found by solving a particular kind of recursive equations (renormalizing equations with rescaling term). The solution starts from some seed that has to be determined first. In contrast with the one-dimensional case, the seed has infinite support in most cases. The way for solving these equations is discussed by means of some examples. Three categories of problems (and solutions) can be distinguished (as opposed to only one in the one-dimensional case). Finally, the morphology of a few coarse-graining invariant orbits is discussed: Complex order (of quasiperiodic type) seems to emerge from random seeds as well as from seeds of simple order (for example, constant or periodic seeds).


2009 ◽  
Vol 16 (02n03) ◽  
pp. 269-279
Author(s):  
Dirk-Michael Schlingemann

We report here on the structure of reversible quantum cellular automata with the additional restriction that these are also Clifford operations. This means that tensor products of Weyl operators (projective representation of a finite abelian symplectic group) are mapped to multiples of tensor products of Weyl operators. Therefore Clifford quantum cellular automata are induced by symplectic cellular automata in phase space. We characterize these symplectic cellular automata and find that all possible local rules must be, up to some global shift, reflection-invariant with respect to the origin. In the one-dimensional case we also find that all 1D Clifford quantum cellular automata are generated by a few elementary operations.


2010 ◽  
Vol 20 (08) ◽  
pp. 2253-2425 ◽  
Author(s):  
LEON O. CHUA ◽  
GIOVANNI E. PAZIENZA

Over the past eight years, we have studied one of the simplest, yet extremely interesting, dynamical systems; namely, the one-dimensional binary Cellular Automata. The most remarkable results have been presented in a series of papers which is concluded by the present article. The final stop of our odyssey is devoted to the analysis of the second half of the 30 Bernoulli στ-shift rules, which constitute the largest among the six groups in which we classified the 256 local rules. For all these 15 rules, we present the basin-tree diagrams obtained by using each bit string with L ≤ 8 as initial state, a summary of the characteristics of their ω-limit orbits, and the space-time patterns generated from the superstring. Also, in the last section we summarize the main results we obtained by means of our "nonlinear dynamics perspective".


2004 ◽  
Vol 15 (02) ◽  
pp. 355-383 ◽  
Author(s):  
ARTURO CARPI ◽  
ALDO de LUCA

We consider some combinatorial properties of two-dimensional words (or pictures) over a given finite alphabet, which are related to the number of occurrences in them of words of a fixed size (m,n). In particular a two-dimensional word (briefly, 2D-word) is called (m,n)-full if it contains as factors (or subwords) all words of size (m,n). An (m,n)-full word such that any word of size (m,n) occurs in it exactly once is called a de Bruijn word of order (m,n). A 2D-word w is called (m,n)-uniform if the difference in the number of occurrences in w of any two words of size (m,n) is at most 1. A 2D-word is called uniform if it is (m,n)-uniform for all m,n>0. In this paper we extend to the two-dimensional case some results relating the notions above which were proved in the one-dimensional case in a preceding article. In this analysis the study of repeated factors in a 2D-word plays an essential role. Finally, some open problems and conjectures are discussed.


Author(s):  
Geoffrey Hellman ◽  
Stewart Shapiro

This chapter develops a Euclidean, two-dimensional, regions-based theory. As with the semi-Aristotelian account in Chapter 2, the goal here is to recover the now orthodox Dedekind–Cantor continuum on a point-free basis. The chapter derives the Archimedean property for a class of readily postulated orientations of certain special regions, what are called “generalized quadrilaterals” (intended as parallelograms), by which the entire space is covered. Then the chapter generalizes this to arbitrary orientations, and then establishes an isomorphism between the space and the usual point-based one. As in the one-dimensional case, this is done on the basis of axioms which contain no explicit “extremal clause”, and we have no axiom of induction other than ordinary numerical (mathematical) induction.


Symmetry ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 1016
Author(s):  
Camelia Liliana Moldovan ◽  
Radu Păltănea

The paper presents a multidimensional generalization of the Schoenberg operators of higher order. The new operators are powerful tools that can be used for approximation processes in many fields of applied sciences. The construction of these operators uses a symmetry regarding the domain of definition. The degree of approximation by sequences of such operators is given in terms of the first and the second order moduli of continuity. Extending certain results obtained by Marsden in the one-dimensional case, the property of preservation of monotonicity and convexity is proved.


2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Raffaela Capitanelli ◽  
Maria Agostina Vivaldi

AbstractIn this paper, we study asymptotic behavior of solutions to obstacle problems for p-Laplacians as {p\to\infty}. For the one-dimensional case and for the radial case, we give an explicit expression of the limit. In the n-dimensional case, we provide sufficient conditions to assure the uniform convergence of the whole family of the solutions of obstacle problems either for data f that change sign in Ω or for data f (that do not change sign in Ω) possibly vanishing in a set of positive measure.


Sign in / Sign up

Export Citation Format

Share Document