LIMIT CYCLE BIFURCATIONS OF TWO KINDS OF POLYNOMIAL DIFFERENTIAL SYSTEMS

2011 ◽  
Vol 21 (11) ◽  
pp. 3341-3357
Author(s):  
PEIPEI ZUO ◽  
MAOAN HAN

In this paper, by using qualitative analysis and the first-order Melnikov function method, we consider two kinds of polynomial systems, and study the Hopf bifurcation problem, obtaining the maximum number of limit cycles.

2021 ◽  
Vol 31 (14) ◽  
Author(s):  
Meilan Cai ◽  
Maoan Han

In this paper, we consider the bifurcation problem of limit cycles for a class of piecewise smooth cubic systems separated by the straight line [Formula: see text]. Using the first order Melnikov function, we prove that at least [Formula: see text] limit cycles can bifurcate from an isochronous cubic center at the origin under perturbations of piecewise polynomials of degree [Formula: see text]. Further, the maximum number of limit cycles bifurcating from the center of the unperturbed system is at least [Formula: see text] if the origin is the unique singular point under perturbations.


2020 ◽  
Vol 30 (08) ◽  
pp. 2050115
Author(s):  
Jing Gao ◽  
Yulin Zhao

In this paper, we study a class of [Formula: see text]-equivariant planar polynomial differential systems [Formula: see text]. It is shown that for any [Formula: see text] there is a differential system of the above type having at least [Formula: see text] limit cycles. This is proved by estimating the number of zeros of the first-order Melnikov function.


2014 ◽  
Vol 24 (03) ◽  
pp. 1450036 ◽  
Author(s):  
Chaoxiong Du ◽  
Qinlong Wang ◽  
Wentao Huang

We study the Hopf bifurcation for a class of three-dimensional cubic Kolmogorov model by making use of our method (i.e. singular values method). We show that the positive singular point (1, 1, 1) of an investigated model can become a fine focus of 5 order, and moreover, it can bifurcate five small limit cycles under certain coefficients with disturbed condition. In terms of three-dimensional cubic Kolmogorov model, published references can hardly be seen, and our results are new. At the same time, it is worth pointing out that our method is valid to study the Hopf bifurcation problem for other three-dimensional polynomial differential systems.


2021 ◽  
Vol 31 (09) ◽  
pp. 2150123
Author(s):  
Xiaoyan Chen ◽  
Maoan Han

In this paper, we study Poincaré bifurcation of a class of piecewise polynomial systems, whose unperturbed system has a period annulus together with two invariant lines. The main concerns are the number of zeros of the first order Melnikov function and the estimation of the number of limit cycles which bifurcate from the period annulus under piecewise polynomial perturbations of degree [Formula: see text].


Complexity ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-6
Author(s):  
Amor Menaceur ◽  
Salah Mahmoud Boulaaras ◽  
Amar Makhlouf ◽  
Karthikeyan Rajagobal ◽  
Mohamed Abdalla

By means of the averaging method of the first order, we introduce the maximum number of limit cycles which can be bifurcated from the periodic orbits of a Hamiltonian system. Besides, the perturbation has been used for a particular class of the polynomial differential systems.


2018 ◽  
Vol 28 (02) ◽  
pp. 1850026
Author(s):  
Yuanyuan Liu ◽  
Feng Li ◽  
Pei Dang

We consider the bifurcation in a class of piecewise polynomial systems with piecewise polynomial perturbations. The corresponding unperturbed system is supposed to possess an elementary or nilpotent critical point. First, we present 17 cases of possible phase portraits and conditions with at least one nonsmooth periodic orbit for the unperturbed system. Then we focus on the two specific cases with two heteroclinic orbits and investigate the number of limit cycles near the loop by means of the first-order Melnikov function, respectively. Finally, we take a quartic piecewise system with quintic piecewise polynomial perturbation as an example and obtain that there can exist ten limit cycles near the heteroclinic loop.


2018 ◽  
Vol 28 (14) ◽  
pp. 1850175
Author(s):  
Fangfang Jiang ◽  
Zhicheng Ji ◽  
Yan Wang

In this paper, we investigate the number of limit cycles for two classes of discontinuous Liénard polynomial perturbed differential systems. By the second-order averaging theorem of discontinuous differential equations, we provide several criteria on the lower upper bounds for the maximum number of limit cycles. The results show that the second-order averaging theorem of discontinuous differential equations can predict more limit cycles than the first-order one.


2021 ◽  
Vol 0 (0) ◽  
pp. 0
Author(s):  
Tao Li ◽  
Jaume Llibre

<p style='text-indent:20px;'>In this paper we study the maximum number of limit cycles bifurcating from the periodic orbits of the center <inline-formula><tex-math id="M1">\begin{document}$ \dot x = -y((x^2+y^2)/2)^m, \dot y = x((x^2+y^2)/2)^m $\end{document}</tex-math></inline-formula> with <inline-formula><tex-math id="M2">\begin{document}$ m\ge0 $\end{document}</tex-math></inline-formula> under discontinuous piecewise polynomial (resp. polynomial Hamiltonian) perturbations of degree <inline-formula><tex-math id="M3">\begin{document}$ n $\end{document}</tex-math></inline-formula> with the discontinuity set <inline-formula><tex-math id="M4">\begin{document}$ \{(x, y)\in\mathbb{R}^2: xy = 0\} $\end{document}</tex-math></inline-formula>. Using the averaging theory up to any order <inline-formula><tex-math id="M5">\begin{document}$ N $\end{document}</tex-math></inline-formula>, we give upper bounds for the maximum number of limit cycles in the function of <inline-formula><tex-math id="M6">\begin{document}$ m, n, N $\end{document}</tex-math></inline-formula>. More importantly, employing the higher order averaging method we provide new lower bounds of the maximum number of limit cycles for several types of piecewise polynomial systems, which improve the results of the previous works. Besides, we explore the effect of 4-star-symmetry on the maximum number of limit cycles bifurcating from the unperturbed periodic orbits. Our result implies that 4-star-symmetry almost halves the maximum number.</p>


2016 ◽  
Vol 2016 ◽  
pp. 1-11
Author(s):  
Ziguo Jiang

We study the number of limit cycles for the quadratic polynomial differential systemsx˙=-y+x2,y˙=x+xyhaving an isochronous center with continuous and discontinuous cubic polynomial perturbations. Using the averaging theory of first order, we obtain that 3 limit cycles bifurcate from the periodic orbits of the isochronous center with continuous perturbations and at least 7 limit cycles bifurcate from the periodic orbits of the isochronous center with discontinuous perturbations. Moreover, this work shows that the discontinuous systems have at least 4 more limit cycles surrounding the origin than the continuous ones.


2015 ◽  
Vol 25 (10) ◽  
pp. 1550131 ◽  
Author(s):  
Fangfang Jiang ◽  
Junping Shi ◽  
Jitao Sun

In this paper, we investigate the number of limit cycles for a class of discontinuous planar differential systems with multiple sectors separated by many rays originating from the origin. In each sector, it is a smooth generalized Liénard polynomial differential system x′ = -y + g1(x) + f1(x)y and y′ = x + g2(x) + f2(x)y, where fi(x) and gi(x) for i = 1, 2 are polynomials of variable x with any given degree. By the averaging theory of first-order for discontinuous differential systems, we provide the criteria on the maximum number of medium amplitude limit cycles for the discontinuous generalized Liénard polynomial differential systems. The upper bound for the number of medium amplitude limit cycles can be attained by specific examples.


Sign in / Sign up

Export Citation Format

Share Document