A Series of New Chaotic Attractors via Switched Linear Integer Order and Fractional Order Differential Equations

2015 ◽  
Vol 25 (01) ◽  
pp. 1550008 ◽  
Author(s):  
Fei Xu ◽  
Ross Cressman ◽  
Xiao-Bao Shu ◽  
Xinzhi Liu

This article investigates the design of a series of new chaotic attractors. A switching control with different switching surfaces is designed to link two systems of linear integer order differential equations. Under such control, the linked systems have rich dynamical behaviors such as chaos. We also investigate the dynamical behaviors of the corresponding linear fractional order differential equation systems with switching controls. It is shown that such fractional order systems have chaotic behaviors as well.

2014 ◽  
Vol 24 (10) ◽  
pp. 1450130
Author(s):  
Fei Xu

In this article, we present a systematic approach to design chaos generators using integer order and fractional order differential equation systems. A series of multiwing chaotic attractors and grid multiwing chaotic attractors are obtained using linear integer order differential equation systems with switching controls. The existence of chaotic attractors in the corresponding fractional order differential equation systems is also investigated. We show that, using the nonlinear fractional order differential equation system, or linear fractional order differential equation systems with switching controls, a series of multiwing chaotic attractors can be obtained.


2010 ◽  
Vol 2010 ◽  
pp. 1-10 ◽  
Author(s):  
Coşkun Yakar ◽  
Ali Yakar

The method of the quasilinearization technique in Caputo's sense fractional-order differential equation is applied to obtain lower and upper sequences in terms of the solutions of linear Caputo's sense fractional-order differential equations. It is also shown that these sequences converge to the unique solution of the nonlinear Caputo's sense fractional-order differential equation uniformly and semiquadratically with less restrictive assumptions.


2021 ◽  
Vol 23 (08) ◽  
pp. 181-185
Author(s):  
Karanveer Singh ◽  
◽  
R N Prajapati ◽  

We consider a fractional order differential equation with uncertainty and introduce the concept of solution. It goes beyond ordinary first-order differential equations and differential equations with uncertainty.


2010 ◽  
Vol 2010 ◽  
pp. 1-16 ◽  
Author(s):  
Coşkun Yakar

The qualitative behavior of a perturbed fractional-order differential equation with Caputo's derivative that differs in initial position and initial time with respect to the unperturbed fractional-order differential equation with Caputo's derivative has been investigated. We compare the classical notion of stability to the notion of initial time difference stability for fractional-order differential equations in Caputo's sense. We present a comparison result which again gives the null solution a central role in the comparison fractional-order differential equation when establishing initial time difference stability of the perturbed fractional-order differential equation with respect to the unperturbed fractional-order differential equation.


2019 ◽  
Vol 16 ◽  
pp. 8280-8287
Author(s):  
Mahmoud Mohammed Mostafa El-Borai ◽  
A. Tarek S.A.

In this paper, the existence and uniqueness about the solution for a class of abstract stochastic fractional-order differential equations                                           where  in and  are given functions, are investigated, where the fractional derivative is described in Caputo sense. The fractional calculus, stochastic analysis techniques and the standard $Picard's$ iteration method are used to obtain the required.


2018 ◽  
Vol 11 (4) ◽  
pp. 1058-1099
Author(s):  
Syamal K. Sen ◽  
J. Vasundhara Devi ◽  
R.V.G. Ravi Kumar

Fractional order calculus always includes integer-order too. The question that crops up is: Can it be a widely accepted generalized version of classical calculus? We attempt to highlight the current problems that come in the way to define the fractional calculus that will be universally accepted as a perfect generalized version of integer-order calculus and to point out the efforts in this direction. Also, we discuss the question: Given a non-integer fractional order differential equation as a mathematical model can we readily write the corresponding physical model and vice versa in the same way as we traditionally do for classical differential equations? We demonstrate numerically computationally the pros and cons while addressing the questions keeping in the background the generalization of the inverse of a matrix.


Author(s):  
Tom T. Hartley ◽  
Carl F. Lorenzo

In this paper, the distinction between an operator’s historical initial condition function, the consequential initialization function of the operator, and the resulting initialization response of an entire system, is discussed. The single term and two-term differential equation results with constant history functions from earlier studies are reviewed. A three-term linear fractional-order differential equation with constant history function is studied next. This system is solved by using the proper Laplace transforms for the fractional-order derivatives. The paper then presents the initialization responses for multi-term linear fractional-order systems with commensurate orders that have had arbitrarily-long constant displacements in negative time. Results for short-times and for long-times are provided. These results are obtained by using the proper Laplace transform for the fractional-order derivatives. Using the results of this paper, the initialization response of any linear, commensurate-order, fractional-order system, with arbitrarily-long constant displacements in negative time can be determined.


Complexity ◽  
2018 ◽  
Vol 2018 ◽  
pp. 1-12
Author(s):  
Kin M. Li ◽  
Mihir Sen ◽  
Arturo Pacheco-Vega

In this paper, we present a system identification (SI) procedure that enables building linear time-dependent fractional-order differential equation (FDE) models able to accurately describe time-dependent behavior of complex systems. The parameters in the models are the order of the equation, the coefficients in it, and, when necessary, the initial conditions. The Caputo definition of the fractional derivative, and the Mittag-Leffler function, is used to obtain the corresponding solutions. Since the set of parameters for the model and its initial conditions are nonunique, and there are small but significant differences in the predictions from the possible models thus obtained, the SI operation is carried out via global regression of an error-cost function by a simulated annealing optimization algorithm. The SI approach is assessed by considering previously published experimental data from a shell-and-tube heat exchanger and a recently constructed multiroom building test bed. The results show that the proposed model is reliable within the interpolation domain but cannot be used with confidence for predictions outside this region. However, the proposed system identification methodology is robust and can be used to derive accurate and compact models from experimental data. In addition, given a functional form of a fractional-order differential equation model, as new data become available, the SI technique can be used to expand the region of reliability of the resulting model.


Fractals ◽  
2020 ◽  
Vol 28 (08) ◽  
pp. 2040025
Author(s):  
JINGFEI JIANG ◽  
JUAN L. G. GUIRAO ◽  
TAREQ SAEED

In this study, the two-point boundary value problem is considered for the variable fractional order differential equation with causal operator. Under the definition of the Caputo-type variable fractional order operators, the necessary inequality and the existence results of the solution are obtained for the variable order fractional linear differential equations according to Arzela–Ascoli theorem. Then, based on the proposed existence results and the monotone iterative technique, the existence of the extremal solution is studied, and the relative results are obtained based on the lower and upper solution. Finally, an example is provided to illustrate the validity of the theoretical results.


Sign in / Sign up

Export Citation Format

Share Document