Periodic Flows to Chaos Based on Discrete Implicit Mappings of Continuous Nonlinear Systems

2015 ◽  
Vol 25 (03) ◽  
pp. 1550044 ◽  
Author(s):  
Albert C. J. Luo

This paper presents a semi-analytical method for periodic flows in continuous nonlinear dynamical systems. For the semi-analytical approach, differential equations of nonlinear dynamical systems are discretized to obtain implicit maps, and a mapping structure based on the implicit maps is employed for a periodic flow. From mapping structures, periodic flows in nonlinear dynamical systems are predicted analytically and the corresponding stability and bifurcations of the periodic flows are determined through the eigenvalue analysis. The periodic flows predicted by the single-step implicit maps are discussed first, and the periodic flows predicted by the multistep implicit maps are also presented. Periodic flows in time-delay nonlinear dynamical systems are discussed by the single-step and multistep implicit maps. The time-delay nodes in discretization of time-delay nonlinear systems were treated by both an interpolation and a direct integration. Based on the discrete nodes of periodic flows in nonlinear dynamical systems with/without time-delay, the discrete Fourier series responses of periodic flows are presented. To demonstrate the methodology, the bifurcation tree of period-1 motion to chaos in a Duffing oscillator is presented as a sampled problem. The method presented in this paper can be applied to nonlinear dynamical systems, which cannot be solved directly by analytical methods.

Author(s):  
Ghazaale Leylaz ◽  
Shuo Wang ◽  
Jian-Qiao Sun

AbstractThis paper proposes a technique to identify nonlinear dynamical systems with time delay. The sparse optimization algorithm is extended to nonlinear systems with time delay. The proposed algorithm combines cross-validation techniques from machine learning for automatic model selection and an algebraic operation for preprocessing signals to filter the noise and for removing the dependence on initial conditions. We further integrate the bootstrapping resampling technique with the sparse regression to obtain the statistical properties of estimation. We use Taylor expansion to parameterize time delay. The proposed algorithm in this paper is computationally efficient and robust to noise. A nonlinear Duffing oscillator is simulated to demonstrate the efficiency and accuracy of the proposed technique. An experimental example of a nonlinear rotary flexible joint is presented to further validate the proposed method.


2008 ◽  
Vol 18 (01) ◽  
pp. 1-49 ◽  
Author(s):  
ALBERT C. J. LUO

This paper presents how to apply a newly developed general theory for the global transversality and tangency of flows in n-dimensional nonlinear dynamical systems to a 2-D nonlinear dynamical system (i.e. a periodically forced, damped Duffing oscillator). The global tangency and transversality of the periodic and chaotic motions to the separatrix for such a nonlinear system are discussed to help us understand the complexity of chaos in nonlinear dynamical systems. This paper presents the concept that the global transversality and tangency to the separatrix are independent of the Melnikov function (or the energy increment). Chaos in nonlinear dynamical systems makes the exact energy increment quantity to be chaotic no matter if the nonlinear dynamical systems have separatrices or not. The simple zero of the Melnikov function cannot be used to simply determine the existence of chaos in nonlinear dynamical systems. Through this paper, the expectation is that, from now on, one can use the alternative aspect to look into the complexity of chaos in nonlinear dynamical systems. Therefore, in this paper, the analytical conditions for global transversality and tangency of 2-D nonlinear dynamical systems are presented. The first integral quantity increment (i.e. the energy increment) for a certain time interval is achieved for periodic flows and chaos in the 2-D nonlinear dynamical systems. Under the perturbation assumptions and convergent conditions, the Melnikov function is recovered from the first integral quantity increment. A periodically forced, damped Duffing oscillator with a separatrix is investigated as a sampled problem. The corresponding analytical conditions for the global transversality and tangency to the separatrix are obtained and verified by numerical simulations. The switching planes and the corresponding local and global mappings are defined on the separatrix. The mapping structures are developed for local and global periodic flows passing through the separatrix. The mapping structures of global chaos in the damped Duffing oscillator are also discussed. Bifurcation scenarios of the damped Duffing oscillator are presented through the traditional Poincaré mapping section and the switching planes. The first integral quantity increment (i.e. L-function) is presented to observe the periodicity of flows. In addition, the global tangency of periodic flows in such an oscillator is measured by the G-function and G(1)-function, and is verified by numerical simulations. The first integral quantity increment of periodic flows is zero for their complete periodic cycles. Numerical simulations of chaos in such a Duffing oscillator are carried out through the Poincaré mapping sections. The conservative energy distribution, G-function and L-function along the displacement of Poincaré mapping points are presented to observe the complexity of chaos. The first integral quantity increment (i.e. L-function) of chaotic flows at the Poincaré mapping points is nonzero and chaotic. The switching planes of chaos are presented on the separatrix for a better understanding of the global transversality to the separatrix. The switching point distribution on the separatrix is presented and the switching G-function on the separatrix is given to show the global transversality of chaos on the separatrix. The analytical conditions are obtained from the new theory rather than the Melnikov method. The new conditions for the global transversality and tangency are more accurate and independent of the small parameters.


1978 ◽  
Vol 100 (3) ◽  
pp. 209-213 ◽  
Author(s):  
G. Langholz ◽  
M. Sokolov

The question of whether a system is controllable or not is of prime importance in modern control theory and has been actively researched in recent years. While it is a solved problem for linear systems, it is still an open question when dealing with bilinear and nonlinear systems. In this paper, a controllability criterion is established based on a theorem by Carathe´odory. By associating a given dynamical system with a certain Pfaffian equation, it is argued that the system is controllable (uncontrollable) if its associated Pfaffian form is nonintegrable (integrable).


2013 ◽  
Vol 25 (2) ◽  
pp. 328-373 ◽  
Author(s):  
Auke Jan Ijspeert ◽  
Jun Nakanishi ◽  
Heiko Hoffmann ◽  
Peter Pastor ◽  
Stefan Schaal

Nonlinear dynamical systems have been used in many disciplines to model complex behaviors, including biological motor control, robotics, perception, economics, traffic prediction, and neuroscience. While often the unexpected emergent behavior of nonlinear systems is the focus of investigations, it is of equal importance to create goal-directed behavior (e.g., stable locomotion from a system of coupled oscillators under perceptual guidance). Modeling goal-directed behavior with nonlinear systems is, however, rather difficult due to the parameter sensitivity of these systems, their complex phase transitions in response to subtle parameter changes, and the difficulty of analyzing and predicting their long-term behavior; intuition and time-consuming parameter tuning play a major role. This letter presents and reviews dynamical movement primitives, a line of research for modeling attractor behaviors of autonomous nonlinear dynamical systems with the help of statistical learning techniques. The essence of our approach is to start with a simple dynamical system, such as a set of linear differential equations, and transform those into a weakly nonlinear system with prescribed attractor dynamics by means of a learnable autonomous forcing term. Both point attractors and limit cycle attractors of almost arbitrary complexity can be generated. We explain the design principle of our approach and evaluate its properties in several example applications in motor control and robotics.


2014 ◽  
Vol 66 (2) ◽  
Author(s):  
Amol Marathe ◽  
Rama Govindarajan

This introduction to nonlinear systems is written for students of fluid mechanics, so connections are made throughout the text to familiar fluid flow systems. The aim is to present how nonlinear systems are qualitatively different from linear and to outline some simple procedures by which an understanding of nonlinear systems may be attempted. Considerable attention is paid to linear systems in the vicinity of fixed points, and it is discussed why this is relevant for nonlinear systems. A detailed explanation of chaos is not given, but a flavor of chaotic systems is presented. The focus is on physical understanding and not on mathematical rigor.


2001 ◽  
Vol 24 (5) ◽  
pp. 813-813 ◽  
Author(s):  
Michael Breakspear ◽  
Karl Friston

Tsuda examines the potential contribution of nonlinear dynamical systems, with many degrees of freedom, to understanding brain function. We offer suggestions concerning symmetry and transients to strengthen the physiological motivation and theoretical consistency of this novel research direction: Symmetry plays a fundamental role, theoretically and in relation to real brains. We also highlight a distinction between chaotic “transience” and “itineracy.”


2012 ◽  
Vol 22 (04) ◽  
pp. 1250093 ◽  
Author(s):  
ALBERT C. J. LUO ◽  
JIANZHE HUANG

In this paper, the analytical solutions for period-m flows and chaos in nonlinear dynamical systems are presented through the generalized harmonic balance method. The nonlinear damping, periodically forced, Duffing oscillator was investigated as an example to demonstrate the analytical solutions of periodic motions and chaos. Through this investigation, the mechanism for a period-m motion jumping to another period-n motion in numerical computation is found. In this problem, the Hopf bifurcation of periodic motions is equivalent to the period-doubling bifurcation via Poincare mappings of dynamical systems. The stable and unstable period-m motions can be obtained analytically. Even more, the stable and unstable chaotic motions can be achieved analytically. The methodology presented in this paper can be applied to other nonlinear vibration systems, which is independent of small parameters.


Sign in / Sign up

Export Citation Format

Share Document