Carathe´odory Controllability Criterion for Nonlinear Dynamical Systems

1978 ◽  
Vol 100 (3) ◽  
pp. 209-213 ◽  
Author(s):  
G. Langholz ◽  
M. Sokolov

The question of whether a system is controllable or not is of prime importance in modern control theory and has been actively researched in recent years. While it is a solved problem for linear systems, it is still an open question when dealing with bilinear and nonlinear systems. In this paper, a controllability criterion is established based on a theorem by Carathe´odory. By associating a given dynamical system with a certain Pfaffian equation, it is argued that the system is controllable (uncontrollable) if its associated Pfaffian form is nonintegrable (integrable).

2013 ◽  
Vol 25 (2) ◽  
pp. 328-373 ◽  
Author(s):  
Auke Jan Ijspeert ◽  
Jun Nakanishi ◽  
Heiko Hoffmann ◽  
Peter Pastor ◽  
Stefan Schaal

Nonlinear dynamical systems have been used in many disciplines to model complex behaviors, including biological motor control, robotics, perception, economics, traffic prediction, and neuroscience. While often the unexpected emergent behavior of nonlinear systems is the focus of investigations, it is of equal importance to create goal-directed behavior (e.g., stable locomotion from a system of coupled oscillators under perceptual guidance). Modeling goal-directed behavior with nonlinear systems is, however, rather difficult due to the parameter sensitivity of these systems, their complex phase transitions in response to subtle parameter changes, and the difficulty of analyzing and predicting their long-term behavior; intuition and time-consuming parameter tuning play a major role. This letter presents and reviews dynamical movement primitives, a line of research for modeling attractor behaviors of autonomous nonlinear dynamical systems with the help of statistical learning techniques. The essence of our approach is to start with a simple dynamical system, such as a set of linear differential equations, and transform those into a weakly nonlinear system with prescribed attractor dynamics by means of a learnable autonomous forcing term. Both point attractors and limit cycle attractors of almost arbitrary complexity can be generated. We explain the design principle of our approach and evaluate its properties in several example applications in motor control and robotics.


2014 ◽  
Vol 66 (2) ◽  
Author(s):  
Amol Marathe ◽  
Rama Govindarajan

This introduction to nonlinear systems is written for students of fluid mechanics, so connections are made throughout the text to familiar fluid flow systems. The aim is to present how nonlinear systems are qualitatively different from linear and to outline some simple procedures by which an understanding of nonlinear systems may be attempted. Considerable attention is paid to linear systems in the vicinity of fixed points, and it is discussed why this is relevant for nonlinear systems. A detailed explanation of chaos is not given, but a flavor of chaotic systems is presented. The focus is on physical understanding and not on mathematical rigor.


2001 ◽  
Vol 24 (5) ◽  
pp. 813-813 ◽  
Author(s):  
Michael Breakspear ◽  
Karl Friston

Tsuda examines the potential contribution of nonlinear dynamical systems, with many degrees of freedom, to understanding brain function. We offer suggestions concerning symmetry and transients to strengthen the physiological motivation and theoretical consistency of this novel research direction: Symmetry plays a fundamental role, theoretically and in relation to real brains. We also highlight a distinction between chaotic “transience” and “itineracy.”


2008 ◽  
Vol 18 (05) ◽  
pp. 1531-1537 ◽  
Author(s):  
AYUB KHAN ◽  
PREMPAL SINGH

Chaos synchronization of nonlinear dynamical systems has been studied through theoretical and numerical techniques. For the synchronization of two identical nonlinear chaotic dynamical systems a theorem has been constructed based on the Lyapunov function, which requires a minimal knowledge of system's structure to synchronize with an identical response system. Numerical illustrations have been provided to verify the theorem.


2000 ◽  
Author(s):  
Swaroop Darbha ◽  
K. R. Rajagopal

Abstract In a previous paper, we discussed the characteristics of a “meaningful” average of a collection of dynamical systems, and introduced as well as contructed a “meaningful” average that is not usually what is meant by an “ensemble” average. We also addressed the associated issue of the existence and construction of such an average for a class of interconnected, linear, time invariant dynamical systems. In this paper, we consider the issue of the construction of a meaningful average for a collection of a class of nonlinear dynamical systems. The construction of the meaningful average will involve integrating a nonlinear differential equation, of the same order as that of any member of the systems in the collection. Such an “average” dynamical system is not only attractive from a computational perspective, but also represents the macroscopic behavior of the interconnected dynamical systems. An average dynamical system can be used in the analysis and design of hierarchical systems.


2015 ◽  
Vol 25 (03) ◽  
pp. 1550044 ◽  
Author(s):  
Albert C. J. Luo

This paper presents a semi-analytical method for periodic flows in continuous nonlinear dynamical systems. For the semi-analytical approach, differential equations of nonlinear dynamical systems are discretized to obtain implicit maps, and a mapping structure based on the implicit maps is employed for a periodic flow. From mapping structures, periodic flows in nonlinear dynamical systems are predicted analytically and the corresponding stability and bifurcations of the periodic flows are determined through the eigenvalue analysis. The periodic flows predicted by the single-step implicit maps are discussed first, and the periodic flows predicted by the multistep implicit maps are also presented. Periodic flows in time-delay nonlinear dynamical systems are discussed by the single-step and multistep implicit maps. The time-delay nodes in discretization of time-delay nonlinear systems were treated by both an interpolation and a direct integration. Based on the discrete nodes of periodic flows in nonlinear dynamical systems with/without time-delay, the discrete Fourier series responses of periodic flows are presented. To demonstrate the methodology, the bifurcation tree of period-1 motion to chaos in a Duffing oscillator is presented as a sampled problem. The method presented in this paper can be applied to nonlinear dynamical systems, which cannot be solved directly by analytical methods.


2017 ◽  
Vol 27 (09) ◽  
pp. 1750144 ◽  
Author(s):  
Gamal M. Mahmoud ◽  
Ahmed A. M. Farghaly ◽  
A. A.-H. Shoreh

In this work, we propose a technique to study nonlinear dynamical systems with fractional-order. The main idea of this technique is to transform the fractional-order dynamical system to the integer one based on Jumarie’s modified Riemann–Liouville sense. Many systems in the interdisciplinary fields could be described by fractional-order nonlinear dynamical systems, such as viscoelastic systems, dielectric polarization, electrode-electrolyte polarization, heat conduction, resistance-capacitance-inductance (RLC) interconnect and electromagnetic waves. To deal with integer order dynamical system it would be much easier in contrast with fractional-order system. Two systems are considered as examples to illustrate the validity and advantages of this technique. We have calculated the Lyapunov exponents of these examples before and after the transformation and obtained the same conclusions. We used the integer version of our example to compute numerically the values of the fractional-order and the system parameters at which chaotic and hyperchaotic behaviors exist.


Author(s):  
Albert C. J. Luo ◽  
Yeyin Xu ◽  
Zhaobo Chen

In this paper, analytical solutions of periodic motions in the first-order nonlinear dynamical system are discussed from the finite Fourier series expression. The first-order nonlinear dynamical system is transformed to the dynamical system of coefficients in the Fourier series. From investigation of such dynamical system of coefficients, the analytical solutions of periodic motions are obtained, and the corresponding stability and bifurcation of periodic motions will be determined. In fact, this method provides a frequency-response analysis of periodic motions in nonlinear dynamical systems, which is alike the Laplace transformation of periodic motions for nonlinear dynamical systems. The harmonic frequency-amplitude curves are obtained for different-order harmonic terms in the Fourier series. Through such frequency-amplitude curves, the nonlinear characteristics of periodic motions in the first-order nonlinear system can be determined. From analytical solutions, the initial conditions are obtained for numerical simulations. From such initial conditions, numerical simulations are completed in comparison of the analytical solutions of periodic motions.


Author(s):  
Albert C. J. Luo

In order to investigate the geometrical relation between two flows in two dynamical systems, a flow for an investigated dynamical system is called the compared flow and a flow for a given dynamical system is called the reference flow. A surface on which the reference flow lies is termed the reference surface. The time-change rate of the normal distance between the reference and compared flows in the normal direction of the reference surface is measured by a new function (i.e., G function). Based on the surface of the reference flow, the kth-order G functions are introduced for the noncontact and lth-order contact flows in two different dynamical systems. Through the new functions, the geometric relations between two flows in two dynamical systems are investigated without contact between the reference and compared flows. The dynamics for the compared flow with a contact to the reference surface is briefly addressed. Finally, the brief discussion of applications is given.


2001 ◽  
Vol 11 (08) ◽  
pp. 2205-2215 ◽  
Author(s):  
RYOICHI WADA ◽  
KAZUTOSHI GOHARA

This paper studies closures of fractal sets observed in nonlinear dynamical systems excited stochastically by switched inputs. The Duffing oscillator and the forced dumped pendulum are analyzed as examples. The dynamics of the system is characterized by a fractal set in the phase space. We can numerically construct a closure that encloses the fractal set. Furthermore, it is shown that the closure is a limit cycle attractor of a dynamical system defined by the switching manifold.


Sign in / Sign up

Export Citation Format

Share Document