Response Analysis of van der Pol Vibro-Impact System with Coulomb Friction Under Gaussian White Noise

2018 ◽  
Vol 28 (13) ◽  
pp. 1830043 ◽  
Author(s):  
Meng Su ◽  
Wei Xu ◽  
Guidong Yang

In this paper, the stationary response of a van der Pol vibro-impact system with Coulomb friction excited by Gaussian white noise is studied. The Zhuravlev nonsmooth transformation of the state variables is utilized to transform the original system to a new system without the impact term. Then, the stochastic averaging method is applied to the equivalent system to obtain the stationary probability density functions (pdfs). The accuracy of the analytical results obtained from the proposed procedure is verified by those from the Monte Carlo simulation based on the original system. Effects of different damping coefficients, restitution coefficients, amplitudes of friction and noise intensities on the response are discussed. Additionally, stochastic P-bifurcations are explored.

2021 ◽  
pp. 125-125
Author(s):  
Yajie Li ◽  
Zhiqiang Wu ◽  
Qixun Lan ◽  
Yujie Cai ◽  
Huafeng Xu ◽  
...  

The stochastic P-bifurcation behavior of bi-stability in a generalized Van der Pol oscillator with a fractional damping under multiplicative Gaussian white noise excitation is investigated. Firstly, using the principle of minimal mean square error, the nonlinear stiffness terms can be equivalent to a linear stiffness which is a function of the system amplitude, and the original system is simplified to an equivalent integer order Van der Pol system. Secondly, the system amplitude?s stationary Probability Density Function (PDF) is obtained by stochastic averaging. And then according to the singularity theory, the critical parametric conditions for the system amplitude?s stochastic P-bifurcation are found. Finally, the types of the system?s stationary PDF curves of amplitude are qualitatively analyzed by choosing the corresponding parameters in each area divided by the transition set curves. The consistency between the analytical results and the numerical results obtained from Monte Carlo simulation verifies the theoretical analysis in this paper and the method used in this paper can directly guide the design of the fractional order controller to adjust the response of the system.


2020 ◽  
Vol 2020 ◽  
pp. 1-11
Author(s):  
Guidong Yang ◽  
Dongmei Huang ◽  
Wei Li ◽  
Meng Su ◽  
Francesco Pellicano

The paper is devoted to the steady-state dynamical response analysis of a strongly nonlinear system with impact and Coulomb friction subjected to Gaussian white noise excitation. The Zhuravlev nonsmooth transformation of the state variables combined with the Dirac delta function is utilized to simplify the original system to one without velocity jump. Then, the steady-state probability density functions of the transformed system are derived in terms of the stochastic averaging method of energy envelope. The effectiveness of the presented analytical procedure is verified by those from the Monte Carlo simulation based on the original system. Effects of different restitution coefficients, amplitudes of friction, and noise intensities on the steady-state dynamical responses are investigated in detail. Results show different intensities of Gaussian white noise can affect the peaks value of the probability density functions, whereas the variations of restitution coefficients and amplitudes of friction can induce the occurrence of stochastic P-bifurcation.


2019 ◽  
Vol 2019 (1) ◽  
Author(s):  
Yajie Li ◽  
Zhiqiang Wu ◽  
Guoqi Zhang ◽  
Feng Wang ◽  
Yuancen Wang

Abstract The stochastic P-bifurcation behavior of a bistable Van der Pol system with fractional time-delay feedback under Gaussian white noise excitation is studied. Firstly, based on the minimal mean square error principle, the fractional derivative term is found to be equivalent to the linear combination of damping force and restoring force, and the original system is further simplified to an equivalent integer order system. Secondly, the stationary Probability Density Function (PDF) of system amplitude is obtained by stochastic averaging, and the critical parametric conditions for stochastic P-bifurcation of system amplitude are determined according to the singularity theory. Finally, the types of stationary PDF curves of system amplitude are qualitatively analyzed by choosing the corresponding parameters in each area divided by the transition set curves. The consistency between the analytical solutions and Monte Carlo simulation results verifies the theoretical analysis in this paper.


2020 ◽  
Author(s):  
Lukas Graf ◽  
Mariano Moreno-de-las-Heras ◽  
Joan Estrany

<p><span>Digital elevation models (DEM) are mathematical representations of the Earth's bare surface in computer-readable format. The underlying measurements are often obtained by remote sensing and photogrammetry methods and processed into continuous raster data. Each of these data sources, however, provides imperfect information, and further processing steps often increase the degree of imperfection. Consequently, the process of DEM generation cumulates in uncertainty, which affects subsequent hydro- and geomorphological analyses and modelling (e.g., stream network delineation, flowpath distribution, erosion modelling).</span></p> <p><span>In many DEM-based studies, however, the aspect of uncertainty related to the DEM data source has been neglected. Therefore, we propose a new approach for quantifying the effects of DEM uncertainty on hydro-geomorphological modelling based on Gaussian white noise, a concept widely used in signal processing to map noise in signals and extract the actual message context. The basic idea is to add noise to the original DEM values by means of a Gaussian distribution whose parameters are determined from the mean value of the elevation values in a moving window and the device-specific properties (precision and accuracy).</span></p> <p><span>We postulate that such an approach can be used to determine uncertainties and their effect on subsequent analysis steps of hydro-geomorphological modelling. It is conceivable to create DEM ensembles depending on known parameters such as the accuracy and precision of the measuring instrument, as is used operationally in weather forecasting. Using such ensembles, probability ranges for terrain and catchment hydro-geomorphological properties can be determined and uncertainty ranges can be specified. Thus, the currently mostly deterministic approach of digital terrain modelling will be replaced by a more probabilistic understanding. Overall, our approach will help decision-makers and scientists to better assess the results of digital terrain analysis. Furthermore, it will also facilitate determining whether a result of DEM-based hydro-geomorphological analysis is sufficiently certain to answer specific research questions.</span></p>


Sign in / Sign up

Export Citation Format

Share Document