strongly nonlinear system
Recently Published Documents


TOTAL DOCUMENTS

28
(FIVE YEARS 8)

H-INDEX

4
(FIVE YEARS 1)

Author(s):  
Amin Gholami ◽  
Davood D. Ganji ◽  
Hadi Rezazadeh ◽  
Waleed Adel ◽  
Ahmet Bekir

Abstract The paper deals with the application of a strong method called the modified Mickens iteration technique which is used for solving a strongly nonlinear system. The system describes the motion of a simple mathematical pendulum with a particle attached to it through a stretched wire. This model has great applications especially in the area of nonlinear vibrations and oscillation systems. The proposed method depends on determining the frequency and amplitude of the system through the modified Mickens iterative approach which is a modification of the regular Mickens approach. The preliminaries of the proposed technique are present and the application to the model is discussed. The method depends on the Mickens iteration approach which transforms the considered equation into a linear form and then is solving this equation result in the approximate solution. Some examples are given to validate and illustrate the effectiveness and convenience of the method. These results are compared with other relative techniques from the literature in terms of finding the frequency of the two examined models. The method produces more accurate results when compared to these methods and is considered a strong candidate for solving other nonlinear problems with applications in science and engineering.


2020 ◽  
Vol 2020 ◽  
pp. 1-11
Author(s):  
Guidong Yang ◽  
Dongmei Huang ◽  
Wei Li ◽  
Meng Su ◽  
Francesco Pellicano

The paper is devoted to the steady-state dynamical response analysis of a strongly nonlinear system with impact and Coulomb friction subjected to Gaussian white noise excitation. The Zhuravlev nonsmooth transformation of the state variables combined with the Dirac delta function is utilized to simplify the original system to one without velocity jump. Then, the steady-state probability density functions of the transformed system are derived in terms of the stochastic averaging method of energy envelope. The effectiveness of the presented analytical procedure is verified by those from the Monte Carlo simulation based on the original system. Effects of different restitution coefficients, amplitudes of friction, and noise intensities on the steady-state dynamical responses are investigated in detail. Results show different intensities of Gaussian white noise can affect the peaks value of the probability density functions, whereas the variations of restitution coefficients and amplitudes of friction can induce the occurrence of stochastic P-bifurcation.


Author(s):  
Matthew A. Cooper

This chapter studies a deterministic approach to transient trajectory generation and control as applied to the forced Van der Pol oscillatory system. This type of system tends towards a strongly nonlinear system, which can be considered chaotic. A classical tuning method, targeted exponential weighting, and isolated trajectory fractionalization trajectory generation methods are examined. Illustrating the given deterministic approach via the Van der Pol system highlights the potentially iterative nature of deterministic methods, and that traditional optimal linear time-invariant control techniques are unable to perform as desired whereas even an idealized nonlinear feedforward control significantly outperforms at the steady-state. It will be shown that utilizing a-priori knowledge of the system dynamics will enable the isolated trajectory fractionalization method to minimize the nonlinear transient effects due to miss-modeled or unmodeled plant dynamics, and that this benefit can be coupled with the targeted exponential weighting approach for greatly decreased trajectory tracking error on the order of a 92% reduction of the objective cost function in the presented case study based on the forced Van der Pol system.


Symmetry ◽  
2019 ◽  
Vol 11 (5) ◽  
pp. 676 ◽  
Author(s):  
Zhiwei Zhang ◽  
Yingjie Wang ◽  
Wei Wang ◽  
Ruilan Tian

In this article, we present a new accurate iterative and asymptotic method to construct analytical periodic solutions for a strongly nonlinear system, even if it is not Z2-symmetric. This method is applicable not only to a conservative system but also to a non-conservative system with a limit cycle response. Distinct from the general harmonic balance method, it depends on balancing a few trigonometric terms (at most five terms) in the energy equation of the nonlinear system. According to this iterative approach, the dynamic frequency is a trigonometric function that varies with time t, which represents the influence of derivatives of the higher harmonic terms in a compact form and leads to a significant reduction of calculation workload. Two examples were solved and numerical solutions are presented to illustrate the effectiveness and convenience of the method. Based on the present method, we also outline a modified energy balance method to further simplify the procedure of higher order computation. Finally, a nonlinear strength index is introduced to automatically identify the strength of nonlinearity and classify the suitable strategies.


2017 ◽  
Vol 84 (10) ◽  
Author(s):  
Qiang Feng Lü ◽  
Mao Lin Deng ◽  
Wei Qiu Zhu

The stationary response of multidegree-of-freedom (MDOF) strongly nonlinear system to fractional Gaussian noise (FGN) with Hurst index 1/2 < H < 1 is studied. First, the system is modeled as FGN-excited and -dissipated Hamiltonian system. Based on the integrability and resonance of the associated Hamiltonian system, the system is divided into five classes: partially integrable and resonant, partially integrable and nonresonant, completely integrable and resonant, completely integrable and nonresonant, and nonintegrable. Then, the averaged fractional stochastic differential equations (SDEs) for five classes of quasi-Hamiltonian systems with lower dimension and involving only slowly varying processes are derived. Finally, the approximate stationary probability densities and other statistics of two example systems are obtained by numerical simulation of the averaged fractional SDEs to illustrate the application and compared with those from original systems to show the advantages of the proposed procedure.


SPE Journal ◽  
2015 ◽  
Vol 20 (05) ◽  
pp. 962-982 ◽  
Author(s):  
Xiaodong Luo ◽  
Andreas S. Stordal ◽  
Rolf J. Lorentzen ◽  
Geir Nævdal

Summary The focus of this work is on an alternative implementation of the iterative-ensemble smoother (iES). We show that iteration formulae similar to those used by Chen and Oliver (2013) and Emerick and Reynolds (2012) can be derived by adopting a regularized Levenberg-Marquardt (RLM) algorithm (Jin 2010) to approximately solve a minimum-average-cost (MAC) problem. This not only leads to an alternative theoretical tool in understanding and analyzing the behavior of the aforementioned iES, but also provides insights and guidelines for further developments of the smoothing algorithms. For illustration, we compare the performance of an implementation of the RLM-MAC algorithm with that of the approximate iES used by Chen and Oliver (2013) in three numerical examples: an initial condition estimation problem in a strongly nonlinear system, a facies estimation problem in a 2D reservoir, and the history-matching problem in the Brugge field case. In these three specific cases, the RLM-MAC algorithm exhibits comparable or better performance, especially in the strongly nonlinear system.


Sign in / Sign up

Export Citation Format

Share Document