scholarly journals Bifurcation Diagrams and Global Phase Portraits for Some Hamiltonian Systems with Rational Potentials

2018 ◽  
Vol 28 (13) ◽  
pp. 1850168
Author(s):  
Ting Chen ◽  
Jaume Llibre

In this paper, we study the global dynamical behavior of the Hamiltonian system [Formula: see text], [Formula: see text] with the rational potential Hamiltonian [Formula: see text], where [Formula: see text] and [Formula: see text] are polynomials of degree 1 or 2. First we get the normal forms for these rational Hamiltonian systems by some linear change of variables. Then we classify all the global phase portraits of these systems in the Poincaré disk and provide their bifurcation diagrams.

2020 ◽  
Vol 30 (12) ◽  
pp. 2050164
Author(s):  
Fabio Scalco Dias ◽  
Ronisio Moises Ribeiro ◽  
Claudia Valls

We provide normal forms and the global phase portraits on the Poincaré disk of all planar Kukles systems of degree [Formula: see text] with [Formula: see text]-equivariant symmetry. Moreover, we also provide the bifurcation diagrams for these global phase portraits.


2021 ◽  
Vol 31 (06) ◽  
pp. 2150083
Author(s):  
Fabio Scalco Dias ◽  
Ronisio Moises Ribeiro ◽  
Claudia Valls

We provide the normal forms, the bifurcation diagrams and the global phase portraits on the Poincaré disk of all planar Kukles systems of degree [Formula: see text] with [Formula: see text]-symmetries.


2021 ◽  
Vol 0 (0) ◽  
pp. 0
Author(s):  
Jaume Llibre ◽  
Yuzhou Tian

<p style='text-indent:20px;'>We characterize the meromorphic Liouville integrability of the Hamiltonian systems with Hamiltonian <inline-formula><tex-math id="M2">\begin{document}$ H = \left(p_1^2+p_2^2\right)/2+1/P(q_1, q_2) $\end{document}</tex-math></inline-formula>, being <inline-formula><tex-math id="M3">\begin{document}$ P(q_1, q_2) $\end{document}</tex-math></inline-formula> a homogeneous polynomial of degree <inline-formula><tex-math id="M4">\begin{document}$ 4 $\end{document}</tex-math></inline-formula> of one of the following forms <inline-formula><tex-math id="M5">\begin{document}$ \pm q_1^4 $\end{document}</tex-math></inline-formula>, <inline-formula><tex-math id="M6">\begin{document}$ 4q_1^3q_2 $\end{document}</tex-math></inline-formula>, <inline-formula><tex-math id="M7">\begin{document}$ \pm 6q_1^2q_2^2 $\end{document}</tex-math></inline-formula>, <inline-formula><tex-math id="M8">\begin{document}$ \pm \left(q_1^2+q_2^2\right)^2 $\end{document}</tex-math></inline-formula>, <inline-formula><tex-math id="M9">\begin{document}$ \pm q_2^2\left(6q_1^2-q_2^2\right) $\end{document}</tex-math></inline-formula>, <inline-formula><tex-math id="M10">\begin{document}$ \pm q_2^2\left(6q_1^2+q_2^2\right) $\end{document}</tex-math></inline-formula>, <inline-formula><tex-math id="M11">\begin{document}$ q_1^4+6\mu q_1^2q_2^2-q_2^4 $\end{document}</tex-math></inline-formula>, <inline-formula><tex-math id="M12">\begin{document}$ -q_1^4+6\mu q_1^2q_2^2+q_2^4 $\end{document}</tex-math></inline-formula> with <inline-formula><tex-math id="M13">\begin{document}$ \mu&gt;-1/3 $\end{document}</tex-math></inline-formula> and <inline-formula><tex-math id="M14">\begin{document}$ \mu\neq 1/3 $\end{document}</tex-math></inline-formula>, and <inline-formula><tex-math id="M15">\begin{document}$ q_1^4+6\mu q_1^2q_2^2+q_2^4 $\end{document}</tex-math></inline-formula> with <inline-formula><tex-math id="M16">\begin{document}$ \mu \neq \pm 1/3 $\end{document}</tex-math></inline-formula>. We note that any homogeneous polynomial of degree <inline-formula><tex-math id="M17">\begin{document}$ 4 $\end{document}</tex-math></inline-formula> after a linear change of variables and a rescaling can be written as one of the previous polynomials. We remark that for the polynomial <inline-formula><tex-math id="M18">\begin{document}$ q_1^4+6\mu q_1^2q_2^2+q_2^4 $\end{document}</tex-math></inline-formula> when <inline-formula><tex-math id="M19">\begin{document}$ \mu\in\left\{-5/3, -2/3\right\} $\end{document}</tex-math></inline-formula> we only can prove that it has no a polynomial first integral.</p>


2021 ◽  
Vol 2 (2) ◽  
pp. 51-57
Author(s):  
P.K. Santra

In this work, an interaction between prey and its predator involving the effect of fear in presence of the predator and the square root functional response is investigated. Fixed points and their stability condition are calculated. The conditions for the occurrence of some phenomena namely Neimark-Sacker, Flip, and Fold bifurcations are given. Base on some hypothetical data, the numerical simulations consist of phase portraits and bifurcation diagrams are demonstrated to picturise the dynamical behavior. It is also shown numerically that rich dynamics are obtained by the discrete model as the effect of fear.


2020 ◽  
Vol 30 (01) ◽  
pp. 2050006
Author(s):  
Montserrat Corbera ◽  
Claudia Valls

We characterize the phase portraits in the Poincaré disk of all planar polynomial Hamiltonian systems of degree three with a nilpotent saddle at the origin and [Formula: see text]-symmetric with [Formula: see text].


2010 ◽  
Vol 31 (5) ◽  
pp. 1287-1303 ◽  
Author(s):  
ABED BOUNEMOURA

AbstractIn this article, we consider solutions that start close to some linearly stable invariant tori in an analytic Hamiltonian system, and we prove results of stability for a super-exponentially long interval of time, under generic conditions. The proof combines classical Birkhoff normal forms with a new method for obtaining generic Nekhoroshev estimates developed by the author and L. Niederman in another paper. We will focus mainly on the neighbourhood of elliptic fixed points, since with our approach the other cases can be treated in a very similar way.


2018 ◽  
Vol 61 (1) ◽  
pp. 149-165 ◽  
Author(s):  
Jaume Llibre ◽  
Claudia Valls

AbstractWe provide normal forms and the global phase portraits on the Poincaré disk for all Abel quadratic polynomial diòerential equations of the second kind with -symmetries.


2018 ◽  
Vol 2018 ◽  
pp. 1-7 ◽  
Author(s):  
Nina Xue ◽  
Wencai Zhao

In this paper, we consider the effective reducibility of the quasi-periodic linear Hamiltonian system x˙=A+εQt,εx, ε∈0,ε0, where A is a constant matrix with possible multiple eigenvalues and Q(t,ε) is analytic quasi-periodic with respect to t. Under nonresonant conditions, it is proved that this system can be reduced to y˙=A⁎ε+εR⁎t,εy, ε∈0,ε⁎, where R⁎ is exponentially small in ε, and the change of variables that perform such a reduction is also quasi-periodic with the same basic frequencies as Q.


Sign in / Sign up

Export Citation Format

Share Document