BREAKDOWN OF LIBRATIONAL INVARIANT SURFACES

1999 ◽  
Vol 09 (05) ◽  
pp. 975-982
Author(s):  
MIQUEL ANGEL ANDREU ◽  
ALESSANDRA CELLETTI ◽  
CORRADO FALCOLINI

A numerical investigation of the stability of invariant librational tori is presented. The method has been developed for a model describing the spin-orbit coupling in Celestial Mechanics. Periodic orbits approaching the librational torus are computed by means of Newton's method. According to Greene's criterion, their stability is strictly related to the survival of invariant tori. We consider librational tori around the main spin-orbit resonances (1:1, 3:2). Their existence provides the stability of the resonances, due to the confinement properties in the three-dimensional phase space associated to our model. The results are consistent with the actual observations of the eccentricity and of the oblateness parameter. A different behavior of the Moon and Mercury around the main resonances is evidenced, providing interesting suggestions about the different probabilities of capture in a resonance.

1984 ◽  
Vol 104 (2) ◽  
pp. 106-108 ◽  
Author(s):  
Reinaldo Angulo ◽  
Simón Codriansky ◽  
Carlos A. Gonzalez-Bernardo ◽  
Andrés J. Kalnay ◽  
Freddy Perez-M ◽  
...  

2019 ◽  
Vol 4 (1) ◽  
pp. 25 ◽  
Author(s):  
Paola Gentile ◽  
Vittorio Benvenuto ◽  
Carmine Ortix ◽  
Canio Noce ◽  
Mario Cuoco

In this paper, we study an atomic chain in the presence of modulated charge potential and modulated Rashba spin-orbit coupling (RSOC) of equal periods. We show that for commensurate periodicities, λ = 4 n with integer n, the three-dimensional synthetic space obtained by sliding the two phases of the charge potential and RSOC features a topological nodal-line semimetal protected by an anti-unitary particle-hole symmetry. The location and shape of the nodal lines strongly depend on the relative amplitude between the charge potential and RSOC.


2014 ◽  
Vol 926-930 ◽  
pp. 440-443
Author(s):  
Ning Ding ◽  
Xi Feng Liu ◽  
Xiao Tian Wang ◽  
Wen Yuan

Using the full-potential linerized augumented plane-wave method based on the density function theory, we theoretically predict the Heusler compound Lu2FePb is a new three-dimensional topological insulator system. We also point out that the spin-orbit coupling is not the leading cause but an account can add further fuel to the band inversion.


2019 ◽  
Vol 489 (1) ◽  
pp. 1344-1356
Author(s):  
Akinari Hamabata ◽  
Masamune Oguri ◽  
Takahiro Nishimichi

Abstract Velocity dispersions have been employed as a method to measure masses of clusters. To complement this conventional method, we explore the possibility of constraining cluster masses from the stacked phase space distribution of galaxies at larger radii, where infall velocities are expected to have a sensitivity to cluster masses. First, we construct a two-component model of the three-dimensional phase space distribution of haloes surrounding clusters up to 50 $\, h^{-1}$ Mpc from cluster centres based on N-body simulations. We confirm that the three-dimensional phase space distribution shows a clear cluster mass dependence up to the largest scale examined. We then calculate the probability distribution function of pairwise line-of-sight velocities between clusters and haloes by projecting the three-dimensional phase space distribution along the line of sight with the effect of the Hubble flow. We find that this projected phase space distribution, which can directly be compared with observations, shows a complex mass dependence due to the interplay between infall velocities and the Hubble flow. Using this model, we estimate the accuracy of dynamical mass measurements from the projected phase space distribution at the transverse distance from cluster centres larger than $2\, h^{-1}$ Mpc. We estimate that, by using 1.5 × 105 spectroscopic galaxies, we can constrain the mean cluster masses with an accuracy of 14.5 per cent if we fully take account of the systematic error coming from the inaccuracy of our model. This can be improved down to 5.7 per cent by improving the accuracy of the model.


2019 ◽  
Vol 21 (4) ◽  
pp. 043038
Author(s):  
Yuh Kobayashi ◽  
Hideki Takayasu ◽  
Shlomo Havlin ◽  
Misako Takayasu

Sign in / Sign up

Export Citation Format

Share Document