SEMI-BALANCED PARTITIONS OF TWO SETS OF POINTS AND EMBEDDINGS OF ROOTED FORESTS

2005 ◽  
Vol 15 (03) ◽  
pp. 229-238 ◽  
Author(s):  
ATSUSHI KANEKO ◽  
MIKIO KANO

Let m be a positive integer and let R1, R2 and B be three disjoint sets of points in the plane such that no three points of R1 ∪ R2 ∪ B lie on the same line and |B| = (m-1)|R1|+m|R2|. Put g = |R1∪R2|. Then there exists a subdivision X1∪X2∪⋯∪Xg of the plane into g disjoint convex polygons such that (i) |Xi ∩ (R1 ∪ R2)| = 1 for all 1 ≤ i ≤ g; and (ii) |Xi∩B| = m-1 if |Xi∩R1| = 1, and |Xi∩B| = m if |Xi∩R2| = 1. This partition is called a semi-balanced partition, and our proof gives an O(n4) time algorithm for finding the above semi-balanced partition, where n = |R1| + |R2| + |B|. We next apply the above result to the following theorem: Let T1,…,Tg be g disjoint rooted trees such that |Ti| ∈ {m,m+1} and vi is the root of Ti for all 1 ≤ i ≤ g. Let P be a set of |T1|+⋯+|Tg| points in the plane in general position that contains g specified points p1,…,pg. Then the rooted forest T1 ∪ ⋯ ∪ Tg can be straight-line embedded onto P so that each vi corresponds to pi for every 1 ≤ i ≤ g.

Author(s):  
ATSUSHI KANEKO ◽  
M. KANO ◽  
KIYOSHI YOSHIMOTO

Let X and Y be two disjoint sets of points in the plane such that |X|=|Y| and no three points of X ∪ Y are on the same line. Then we can draw an alternating Hamilton cycle on X∪Y in the plane which passes through alternately points of X and those of Y, whose edges are straight-line segments, and which contains at most |X|-1 crossings. Our proof gives an O(n2 log n) time algorithm for finding such an alternating Hamilton cycle, where n =|X|. Moreover we show that the above upper bound |X|-1 on crossing number is best possible for some configurations.


2018 ◽  
Vol 28 (01) ◽  
pp. 39-56 ◽  
Author(s):  
Jude Buot ◽  
Mikio Kano

Let [Formula: see text] and [Formula: see text] be two disjoint sets of red points and blue points, respectively, in the plane in general position. Assign a weight [Formula: see text] to each red point and a weight [Formula: see text] to each blue point, where [Formula: see text] and [Formula: see text] are positive integers. Define the weight of a region in the plane as the sum of the weights of red and blue points in it. We give necessary and sufficient conditions for the existence of a line that bisects the weight of the plane whenever the total weight [Formula: see text] is [Formula: see text], for some integer [Formula: see text]. Moreover, we look closely into the special case where [Formula: see text] and [Formula: see text] since this case is important to generate a weight-equitable subdivision of the plane. Among other results, we show that for any configuration of [Formula: see text] with total weight [Formula: see text], for some integer [Formula: see text] and odd integer [Formula: see text], the plane can be subdivided into [Formula: see text] convex regions of weight [Formula: see text] if and only if [Formula: see text]. Using the proofs of the main result, we also give a polynomial time algorithm in finding a weight-equitable subdivision in the plane.


2013 ◽  
Vol 50 (3) ◽  
pp. 331-354
Author(s):  
Liping Wu ◽  
Wanbing Lu

Let N(k, l) be the smallest positive integer such that any set of N(k, l) points in the plane, no three collinear, contains both a convex k-gon and a convex l-gon with disjoint convex hulls. In this paper, we prove that N(3, 4) = 7, N(4, 4) = 9, N(3, 5) = 10 and N(4, 5) = 11.


1997 ◽  
Vol 07 (03) ◽  
pp. 211-223 ◽  
Author(s):  
Marek Chrobak ◽  
Goos Kant

We consider the problem of embedding the vertices of a plane graph into a small (polynomial size) grid in the plane in such a way that the edges are straight, nonintersecting line segments and faces are convex polygons. We present a linear-time algorithm which, given an n-vertex 3-connected plane G (with n ≥ 3), finds such a straight-line convex embedding of G into a (n - 2) × (n - 2) grid.


2017 ◽  
Vol 27 (03) ◽  
pp. 159-176
Author(s):  
Helmut Alt ◽  
Sergio Cabello ◽  
Panos Giannopoulos ◽  
Christian Knauer

We study the complexity of the following cell connection problems in segment arrangements. Given a set of straight-line segments in the plane and two points [Formula: see text] and [Formula: see text] in different cells of the induced arrangement: [(i)] compute the minimum number of segments one needs to remove so that there is a path connecting [Formula: see text] to [Formula: see text] that does not intersect any of the remaining segments; [(ii)] compute the minimum number of segments one needs to remove so that the arrangement induced by the remaining segments has a single cell. We show that problems (i) and (ii) are NP-hard and discuss some special, tractable cases. Most notably, we provide a near-linear-time algorithm for a variant of problem (i) where the path connecting [Formula: see text] to [Formula: see text] must stay inside a given polygon [Formula: see text] with a constant number of holes, the segments are contained in [Formula: see text], and the endpoints of the segments are on the boundary of [Formula: see text]. The approach for this latter result uses homotopy of paths to group the segments into clusters with the property that either all segments in a cluster or none participate in an optimal solution.


2002 ◽  
Vol 12 (03) ◽  
pp. 207-216 ◽  
Author(s):  
JONG-SUNG HA ◽  
SUNG-YONG SHIN

In this paper, we propose new rules of advancing edges for computing the intersection of a pair of convex polygons in the plane. These rules have no ambiguities when extended into the spherical surface, differently from those of O'Rourke et al.4 Finally, we design a linear-time algorithm for computing the intersection of a pair of spherical convex polygons, and prove its correctness.


Algorithmica ◽  
2020 ◽  
Vol 82 (11) ◽  
pp. 3306-3337
Author(s):  
Matti Karppa ◽  
Petteri Kaski ◽  
Jukka Kohonen ◽  
Padraig Ó Catháin

Abstract We derandomize Valiant’s (J ACM 62, Article 13, 2015) subquadratic-time algorithm for finding outlier correlations in binary data. This demonstrates that it is possible to perform a deterministic subquadratic-time similarity join of high dimensionality. Our derandomized algorithm gives deterministic subquadratic scaling essentially for the same parameter range as Valiant’s randomized algorithm, but the precise constants we save over quadratic scaling are more modest. Our main technical tool for derandomization is an explicit family of correlation amplifiers built via a family of zigzag-product expanders by Reingold et al. (Ann Math 155(1):157–187, 2002). We say that a function $$f:\{-1,1\}^d\rightarrow \{-1,1\}^D$$ f : { - 1 , 1 } d → { - 1 , 1 } D is a correlation amplifier with threshold $$0\le \tau \le 1$$ 0 ≤ τ ≤ 1 , error $$\gamma \ge 1$$ γ ≥ 1 , and strength p an even positive integer if for all pairs of vectors $$x,y\in \{-1,1\}^d$$ x , y ∈ { - 1 , 1 } d it holds that (i) $$|\langle x,y\rangle |<\tau d$$ | ⟨ x , y ⟩ | < τ d implies $$|\langle f(x),f(y)\rangle |\le (\tau \gamma )^pD$$ | ⟨ f ( x ) , f ( y ) ⟩ | ≤ ( τ γ ) p D ; and (ii) $$|\langle x,y\rangle |\ge \tau d$$ | ⟨ x , y ⟩ | ≥ τ d implies $$\left (\frac{\langle x,y\rangle }{\gamma d}\right )^pD \le \langle f(x),f(y)\rangle \le \left (\frac{\gamma \langle x,y\rangle }{d}\right )^pD$$ ⟨ x , y ⟩ γ d p D ≤ ⟨ f ( x ) , f ( y ) ⟩ ≤ γ ⟨ x , y ⟩ d p D .


2004 ◽  
Vol 41 (2) ◽  
pp. 243-269 ◽  
Author(s):  
Imre Bárány ◽  
Pável Valtr

A subset A of a finite set P of points in the plane is called an empty polygon, if each point of A is a vertex of the convex hull of A and the convex hull of A contains no other points of P. We construct a set of n points in general position in the plane with only ˜1.62n2 empty triangles, ˜1.94n2 empty quadrilaterals, ˜1.02n2 empty pentagons, and ˜0.2n2 empty hexagons.


2006 ◽  
Vol 7 (9) ◽  
pp. 1522-1529 ◽  
Author(s):  
Cheng-lei Yang ◽  
Meng Qi ◽  
Xiang-xu Meng ◽  
Xue-qing Li ◽  
Jia-ye Wang

2006 ◽  
Vol 17 (05) ◽  
pp. 1031-1060 ◽  
Author(s):  
KAZUYUKI MIURA ◽  
SHIN-ICHI NAKANO ◽  
TAKAO NISHIZEKI

A convex grid drawing of a plane graph G is a drawing of G on the plane such that all vertices of G are put on grid points, all edges are drawn as straight-line segments without any edge-intersection, and every face boundary is a convex polygon. In this paper we give a linear-time algorithm for finding a convex grid drawing of every 4-connected plane graph G with four or more vertices on the outer face. The size of the drawing satisfies W + H ≤ n - 1, where n is the number of vertices of G, W is the width and H is the height of the grid drawing. Thus the area W · H is at most ⌈(n - 1)/2⌉ · ⌊(n - 1)/2⌋. Our bounds on the sizes are optimal in a sense that there exist an infinite number of 4-connected plane graphs whose convex drawings need grids such that W + H = n - 1 and W · H = ⌈(n - 1)/2⌉ · ⌊(n - 1)/2⌋.


Sign in / Sign up

Export Citation Format

Share Document