scholarly journals Spread: A Measure of the Size of Metric Spaces

2015 ◽  
Vol 25 (03) ◽  
pp. 207-225 ◽  
Author(s):  
Simon Willerton

Motivated by Leinster-Cobbold measures of biodiversity, the notion of the spread of a finite metric space is introduced. This is related to Leinster’s magnitude of a metric space. Spread is generalized to infinite metric spaces equipped with a measure and is calculated for spheres and straight lines. For Riemannian manifolds the spread is related to the volume and total scalar curvature. A notion of scale-dependent dimension is introduced and seen for approximations to certain fractals to be numerically close to the Minkowski dimension of the original fractals.

2002 ◽  
Vol 04 (04) ◽  
pp. 725-750 ◽  
Author(s):  
CHIKAKO MESE

Recent developments extend much of the known theory of classical harmonic maps between smooth Riemannian manifolds to the case when the target is a metric space of curvature bounded from above. In particular, the existence and regularity theorems for harmonic maps into these singular spaces have been successfully generalized. Furthermore, the uniqueness of harmonic maps is known when the domain has a boundary (with a smallness of image condition if the target curvature is bounded from above by a positive number). In this paper, we will address the question of uniqueness when the domain space is without a boundary in two cases: one, when the curvature of the target is strictly negative and two, for a map between surfaces with nonpositive target curvature.


2019 ◽  
Vol 72 (3) ◽  
pp. 774-804 ◽  
Author(s):  
Stephen J. Dilworth ◽  
Denka Kutzarova ◽  
Mikhail I. Ostrovskii

AbstractMain results of the paper are as follows:(1) For any finite metric space $M$ the Lipschitz-free space on $M$ contains a large well-complemented subspace that is close to $\ell _{1}^{n}$.(2) Lipschitz-free spaces on large classes of recursively defined sequences of graphs are not uniformly isomorphic to $\ell _{1}^{n}$ of the corresponding dimensions. These classes contain well-known families of diamond graphs and Laakso graphs.Interesting features of our approach are: (a) We consider averages over groups of cycle-preserving bijections of edge sets of graphs that are not necessarily graph automorphisms. (b) In the case of such recursive families of graphs as Laakso graphs, we use the well-known approach of Grünbaum (1960) and Rudin (1962) for estimating projection constants in the case where invariant projections are not unique.


2009 ◽  
Vol 20 (02) ◽  
pp. 313-329
Author(s):  
CHING-LUEH CHANG ◽  
YUH-DAUH LYUU ◽  
YEN-WU TI

Let L ≥ 1, ε > 0 be real numbers, (M, d) be a finite metric space and (N, ρ) be a metric space. A query to a metric space consists of a pair of points and asks for the distance between these points. We study the number of queries to metric spaces (M, d) and (N, ρ) needed to decide whether (M, d) is L-bilipschitz embeddable into (N, ρ) or ∊-far from being L-bilipschitz embeddable into N, ρ). When (M, d) is ∊-far from being L-bilipschitz embeddable into (N, ρ), we allow an o(1) probability of error (i.e., returning the wrong answer "L-bilipschitz embeddable"). However, no error is allowed when (M, d) is L-bilipschitz embeddable into (N, ρ). That is, algorithms with only one-sided errors are studied in this paper. When |M| ≤ |N| are both finite, we give an upper bound of [Formula: see text] on the number of queries for determining with one-sided error whether (M, d) is L-bilipschitz embeddable into (N, ρ) or ∊-far from being L-bilipschitz embeddable into (N, ρ). For the special case of finite |M| = |N|, the above upper bound evaluates to [Formula: see text]. We also prove a lower bound of Ω(|N|3/2) for the special case when |M| = |N| are finite and L = 1, which coincides with testing isometry between finite metric spaces. For finite |M| = |N|, the upper and lower bounds thus match up to a multiplicative factor of at most [Formula: see text], which depends only sublogarithmically in |N|. We also investigate the case when (N, ρ) is not necessarily finite. Our results are based on techniques developed in an earlier work on testing graph isomorphism.


2013 ◽  
Vol 56 (3) ◽  
pp. 519-535 ◽  
Author(s):  
TIMOTHY FAVER ◽  
KATELYNN KOCHALSKI ◽  
MATHAV KISHORE MURUGAN ◽  
HEIDI VERHEGGEN ◽  
ELIZABETH WESSON ◽  
...  

AbstractMotivated by a classical theorem of Schoenberg, we prove that an n + 1 point finite metric space has strict 2-negative type if and only if it can be isometrically embedded in the Euclidean space $\mathbb{R}^{n}$ of dimension n but it cannot be isometrically embedded in any Euclidean space $\mathbb{R}^{r}$ of dimension r < n. We use this result as a technical tool to study ‘roundness’ properties of additive metrics with a particular focus on ultrametrics and leaf metrics. The following conditions are shown to be equivalent for a metric space (X,d): (1) X is ultrametric, (2) X has infinite roundness, (3) X has infinite generalized roundness, (4) X has strict p-negative type for all p ≥ 0 and (5) X admits no p-polygonal equality for any p ≥ 0. As all ultrametric spaces have strict 2-negative type by (4) we thus obtain a short new proof of Lemin's theorem: Every finite ultrametric space is isometrically embeddable into some Euclidean space as an affinely independent set. Motivated by a question of Lemin, Shkarin introduced the class $\mathcal{M}$ of all finite metric spaces that may be isometrically embedded into ℓ2 as an affinely independent set. The results of this paper show that Shkarin's class $\mathcal{M}$ consists of all finite metric spaces of strict 2-negative type. We also note that it is possible to construct an additive metric space whose generalized roundness is exactly ℘ for each ℘ ∈ [1, ∞].


2013 ◽  
Vol 65 (1) ◽  
pp. 222-240 ◽  
Author(s):  
N.W. Sauer

Abstract.A metric space M = (M; d) is homogeneous if for every isometry f of a finite subspace of M to a subspace of M there exists an isometry of M onto M extending f . The space M is universal if it isometrically embeds every finite metric space F with dist(F) ⊆ dist(M) (with dist(M) being the set of distances between points in M).A metric space U is a Urysohn metric space if it is homogeneous, universal, separable, and complete. (We deduce as a corollary that a Urysohn metric space U isometrically embeds every separable metric space M with dist(M) ⊆ dist(U).)The main results are: (1) A characterization of the sets dist(U) for Urysohn metric spaces U. (2) If R is the distance set of a Urysohn metric space and M and N are two metric spaces, of any cardinality with distances in R, then they amalgamate disjointly to a metric space with distances in R. (3) The completion of every homogeneous, universal, separable metric space M is homogeneous.


2009 ◽  
Vol 51 (2) ◽  
pp. 301-314 ◽  
Author(s):  
S. M. BUCKLEY ◽  
K. FALK ◽  
D. J. WRAITH

AbstractWe consider Ptolemy's inequality in a metric space setting. It is not hard to see that CAT(0) spaces satisfy this inequality. Although the converse is not true in full generality, we show that if our Ptolemaic space is either a Riemannian or Finsler manifold, then it must also be CAT(0). Ptolemy's inequality is closely related to inversions of metric spaces. We exploit this link to establish a new characterization of Euclidean space amongst all Riemannian manifolds.


2021 ◽  
Vol 9 ◽  
Author(s):  
Andrey Kupavskii ◽  
Arsenii Sagdeev

Abstract For two metric spaces $\mathbb X$ and $\mathcal Y$ the chromatic number $\chi ({{\mathbb X}};{{\mathcal{Y}}})$ of $\mathbb X$ with forbidden $\mathcal Y$ is the smallest k such that there is a colouring of the points of $\mathbb X$ with k colors that contains no monochromatic copy of $\mathcal Y$ . In this article, we show that for each finite metric space $\mathcal {M}$ that contains at least two points the value $\chi \left ({{\mathbb R}}^n_\infty; \mathcal M \right )$ grows exponentially with n. We also provide explicit lower and upper bounds for some special $\mathcal M$ .


2009 ◽  
Vol 80 (3) ◽  
pp. 486-497 ◽  
Author(s):  
ANTHONY WESTON

AbstractDetermining meaningful lower bounds on the supremal strict p-negative type of classes of finite metric spaces is a difficult nonlinear problem. In this paper we use an elementary approach to obtain the following result: given a finite metric space (X,d) there is a constant ζ>0, dependent only on n=∣X∣ and the scaled diameter 𝔇=(diamX)/min{d(x,y)∣x⁄=y} of X (which we may assume is >1), such that (X,d) has p-negative type for all p∈[0,ζ] and strict p-negative type for all p∈[0,ζ). In fact, we obtain A consideration of basic examples shows that our value of ζ is optimal provided that 𝔇≤2. In other words, for each 𝔇∈(1,2] and natural number n≥3, there exists an n-point metric space of scaled diameter 𝔇 whose supremal strict p-negative type is exactly ζ. The results of this paper hold more generally for all finite semi-metric spaces since the triangle inequality is not used in any of the proofs. Moreover, ζ is always optimal in the case of finite semi-metric spaces.


2018 ◽  
Vol 61 (1) ◽  
pp. 33-47 ◽  
Author(s):  
S. OSTROVSKA ◽  
M. I. OSTROVSKII

AbstractGiven a Banach spaceXand a real number α ≥ 1, we write: (1)D(X) ≤ α if, for any locally finite metric spaceA, all finite subsets of which admit bilipschitz embeddings intoXwith distortions ≤C, the spaceAitself admits a bilipschitz embedding intoXwith distortion ≤ α ⋅C; (2)D(X) = α+if, for every ϵ > 0, the conditionD(X) ≤ α + ϵ holds, whileD(X) ≤ α does not; (3)D(X) ≤ α+ifD(X) = α+orD(X) ≤ α. It is known thatD(X) is bounded by a universal constant, but the available estimates for this constant are rather large. The following results have been proved in this work: (1)D((⊕n=1∞Xn)p) ≤ 1+for every nested family of finite-dimensional Banach spaces {Xn}n=1∞and every 1 ≤p≤ ∞. (2)D((⊕n=1∞ℓ∞n)p) = 1+for 1 <p< ∞. (3)D(X) ≤ 4+for every Banach spaceXwith no nontrivial cotype. Statement (3) is a strengthening of the Baudier–Lancien result (2008).


2019 ◽  
Vol 20 (5) ◽  
pp. 1035-1133
Author(s):  
Charles Fefferman ◽  
Sergei Ivanov ◽  
Yaroslav Kurylev ◽  
Matti Lassas ◽  
Hariharan Narayanan

Abstract We study the geometric Whitney problem on how a Riemannian manifold (M, g) can be constructed to approximate a metric space $$(X,d_X)$$ ( X , d X ) . This problem is closely related to manifold interpolation (or manifold reconstruction) where a smooth n-dimensional submanifold $$S\subset {{\mathbb {R}}}^m$$ S ⊂ R m , $$m>n$$ m > n needs to be constructed to approximate a point cloud in $${{\mathbb {R}}}^m$$ R m . These questions are encountered in differential geometry, machine learning, and in many inverse problems encountered in applications. The determination of a Riemannian manifold includes the construction of its topology, differentiable structure, and metric. We give constructive solutions to the above problems. Moreover, we characterize the metric spaces that can be approximated, by Riemannian manifolds with bounded geometry: We give sufficient conditions to ensure that a metric space can be approximated, in the Gromov–Hausdorff or quasi-isometric sense, by a Riemannian manifold of a fixed dimension and with bounded diameter, sectional curvature, and injectivity radius. Also, we show that similar conditions, with modified values of parameters, are necessary. As an application of the main results, we give a new characterization of Alexandrov spaces with two-sided curvature bounds. Moreover, we characterize the subsets of Euclidean spaces that can be approximated in the Hausdorff metric by submanifolds of a fixed dimension and with bounded principal curvatures and normal injectivity radius. We develop algorithmic procedures that solve the geometric Whitney problem for a metric space and the manifold reconstruction problem in Euclidean space, and estimate the computational complexity of these procedures. The above interpolation problems are also studied for unbounded metric sets and manifolds. The results for Riemannian manifolds are based on a generalization of the Whitney embedding construction where approximative coordinate charts are embedded in $${{\mathbb {R}}}^m$$ R m and interpolated to a smooth submanifold.


Sign in / Sign up

Export Citation Format

Share Document