scholarly journals UNIQUENESS THEOREMS FOR HARMONIC MAPS INTO METRIC SPACES

2002 ◽  
Vol 04 (04) ◽  
pp. 725-750 ◽  
Author(s):  
CHIKAKO MESE

Recent developments extend much of the known theory of classical harmonic maps between smooth Riemannian manifolds to the case when the target is a metric space of curvature bounded from above. In particular, the existence and regularity theorems for harmonic maps into these singular spaces have been successfully generalized. Furthermore, the uniqueness of harmonic maps is known when the domain has a boundary (with a smallness of image condition if the target curvature is bounded from above by a positive number). In this paper, we will address the question of uniqueness when the domain space is without a boundary in two cases: one, when the curvature of the target is strictly negative and two, for a map between surfaces with nonpositive target curvature.

2009 ◽  
Vol 51 (2) ◽  
pp. 301-314 ◽  
Author(s):  
S. M. BUCKLEY ◽  
K. FALK ◽  
D. J. WRAITH

AbstractWe consider Ptolemy's inequality in a metric space setting. It is not hard to see that CAT(0) spaces satisfy this inequality. Although the converse is not true in full generality, we show that if our Ptolemaic space is either a Riemannian or Finsler manifold, then it must also be CAT(0). Ptolemy's inequality is closely related to inversions of metric spaces. We exploit this link to establish a new characterization of Euclidean space amongst all Riemannian manifolds.


2021 ◽  
Vol 23 (07) ◽  
pp. 1314-1320
Author(s):  
Parveen Sheoran ◽  

The topology on a set X is formed by a non-negative real valued scalar function called metric, which may be understood as measuring some quantity. Because some of the set’s attributes are similar, there’s a distance between any two elements, or points. Quite evocative of the common concept of distance that we come across in our daily lives. Because its topology is entirely defined by a scalar distance function, this sort of topological space has a distinct advantage over all others. We may reasonably assume that we are familiar with the qualities of such a function and are capable of dealing with it successfully. Instead, a generic topology is frequently dictated by a set of perhaps abstract rules. Frecklet initially proposed the concept of a metric space in 1906, but it was Hausdorff who coined the phrase metric space a few years later.


2015 ◽  
Vol 25 (03) ◽  
pp. 207-225 ◽  
Author(s):  
Simon Willerton

Motivated by Leinster-Cobbold measures of biodiversity, the notion of the spread of a finite metric space is introduced. This is related to Leinster’s magnitude of a metric space. Spread is generalized to infinite metric spaces equipped with a measure and is calculated for spheres and straight lines. For Riemannian manifolds the spread is related to the volume and total scalar curvature. A notion of scale-dependent dimension is introduced and seen for approximations to certain fractals to be numerically close to the Minkowski dimension of the original fractals.


2019 ◽  
Vol 20 (5) ◽  
pp. 1035-1133
Author(s):  
Charles Fefferman ◽  
Sergei Ivanov ◽  
Yaroslav Kurylev ◽  
Matti Lassas ◽  
Hariharan Narayanan

Abstract We study the geometric Whitney problem on how a Riemannian manifold (M, g) can be constructed to approximate a metric space $$(X,d_X)$$ ( X , d X ) . This problem is closely related to manifold interpolation (or manifold reconstruction) where a smooth n-dimensional submanifold $$S\subset {{\mathbb {R}}}^m$$ S ⊂ R m , $$m>n$$ m > n needs to be constructed to approximate a point cloud in $${{\mathbb {R}}}^m$$ R m . These questions are encountered in differential geometry, machine learning, and in many inverse problems encountered in applications. The determination of a Riemannian manifold includes the construction of its topology, differentiable structure, and metric. We give constructive solutions to the above problems. Moreover, we characterize the metric spaces that can be approximated, by Riemannian manifolds with bounded geometry: We give sufficient conditions to ensure that a metric space can be approximated, in the Gromov–Hausdorff or quasi-isometric sense, by a Riemannian manifold of a fixed dimension and with bounded diameter, sectional curvature, and injectivity radius. Also, we show that similar conditions, with modified values of parameters, are necessary. As an application of the main results, we give a new characterization of Alexandrov spaces with two-sided curvature bounds. Moreover, we characterize the subsets of Euclidean spaces that can be approximated in the Hausdorff metric by submanifolds of a fixed dimension and with bounded principal curvatures and normal injectivity radius. We develop algorithmic procedures that solve the geometric Whitney problem for a metric space and the manifold reconstruction problem in Euclidean space, and estimate the computational complexity of these procedures. The above interpolation problems are also studied for unbounded metric sets and manifolds. The results for Riemannian manifolds are based on a generalization of the Whitney embedding construction where approximative coordinate charts are embedded in $${{\mathbb {R}}}^m$$ R m and interpolated to a smooth submanifold.


2020 ◽  
pp. 1-41
Author(s):  
JENS KAAD ◽  
DAVID KYED

We provide a detailed study of actions of the integers on compact quantum metric spaces, which includes general criteria ensuring that the associated crossed product algebra is again a compact quantum metric space in a natural way. Moreover, we provide a flexible set of assumptions ensuring that a continuous family of $\ast$ -automorphisms of a compact quantum metric space yields a field of crossed product algebras which varies continuously in Rieffel’s quantum Gromov–Hausdorff distance. Finally, we show how our results apply to continuous families of Lip-isometric actions on compact quantum metric spaces and to families of diffeomorphisms of compact Riemannian manifolds which vary continuously in the Whitney $C^{1}$ -topology.


2021 ◽  
Vol 69 (2) ◽  
pp. 338-354
Author(s):  
Zoran Mitrović ◽  
Mudasir Jounis ◽  
Miloje Rajović

Introduction/purpose: This article establishes several new contractive conditions in the context of so-called F-metric spaces. The main purpose was to generalize, extend, improve, complement, unify and enrich the already published results in the existing literature. We used only the property (F1) of Wardowski as well as one well-known lemma for the proof that Picard sequence is an F-Cauchy in the framework of F-metric space. Methods: Fixed point metric theory methods were used. Results: New results are enunciated concerning the F-contraction of two mappings S and T in the context of F-complete F-metric spaces. Conclusions: The obtained results represent sharp and significant improvements of some recently published ones. At the end of the paper, an example is given, claiming that the results presented in this paper are proper generalizations of recent developments.


2018 ◽  
Vol 1 (1) ◽  
pp. 22
Author(s):  
Malahayati Malahayati

This research was conducted to analyze several theorems about fixed point uniqueness on multiplicative metric space. Firstly, the proof of fixed point uniqueness theorem on complete multiplicative metric space is analyzed with involving multiplicative continuous functions. Then, several fixed point uniqueness theorems is analyzed without involving multiplicative continuous functions. The proof of fixed point uniqueness theorem on complete multiplicative metric space with involving multiplicative continuous functions can be done without requirement of contraction multiplicative mapping. If this mapping is satisfying a condition with involving multiplicative continuous functions then it was proven that it had the unique fixed point. Furthermore, the proof of fixed point uniqueness theorem on complete multiplicative metric space without involving multiplicative continuous functions can be done by requiring the mapping is contraction.


2013 ◽  
Vol 1 ◽  
pp. 200-231 ◽  
Author(s):  
Andrea C.G. Mennucci

Abstract In this paper we discuss asymmetric length structures and asymmetric metric spaces. A length structure induces a (semi)distance function; by using the total variation formula, a (semi)distance function induces a length. In the first part we identify a topology in the set of paths that best describes when the above operations are idempotent. As a typical application, we consider the length of paths defined by a Finslerian functional in Calculus of Variations. In the second part we generalize the setting of General metric spaces of Busemann, and discuss the newly found aspects of the theory: we identify three interesting classes of paths, and compare them; we note that a geodesic segment (as defined by Busemann) is not necessarily continuous in our setting; hence we present three different notions of intrinsic metric space.


Filomat ◽  
2017 ◽  
Vol 31 (11) ◽  
pp. 3157-3172
Author(s):  
Mujahid Abbas ◽  
Bahru Leyew ◽  
Safeer Khan

In this paper, the concept of a new ?-generalized quasi metric space is introduced. A number of well-known quasi metric spaces are retrieved from ?-generalized quasi metric space. Some general fixed point theorems in a ?-generalized quasi metric spaces are proved, which generalize, modify and unify some existing fixed point theorems in the literature. We also give applications of our results to obtain fixed points for contraction mappings in the domain of words and to prove the existence of periodic solutions of delay differential equations.


Mathematics ◽  
2021 ◽  
Vol 9 (2) ◽  
pp. 118
Author(s):  
Jelena Vujaković ◽  
Eugen Ljajko ◽  
Mirjana Pavlović ◽  
Stojan Radenović

One of the main goals of this paper is to obtain new contractive conditions using the method of a strictly increasing mapping F:(0,+∞)→(−∞,+∞). According to the recently obtained results, this was possible (Wardowski’s method) only if two more properties (F2) and (F3) were used instead of the aforementioned strictly increasing (F1). Using only the fact that the function F is strictly increasing, we came to new families of contractive conditions that have not been found in the existing literature so far. Assuming that α(u,v)=1 for every u and v from metric space Ξ, we obtain some contractive conditions that can be found in the research of Rhoades (Trans. Amer. Math. Soc. 1977, 222) and Collaco and Silva (Nonlinear Anal. TMA 1997). Results of the paper significantly improve, complement, unify, generalize and enrich several results known in the current literature. In addition, we give examples with results in line with the ones we obtained.


Sign in / Sign up

Export Citation Format

Share Document