scholarly journals Metric Spaces with Expensive Distances

Author(s):  
Michael Kerber ◽  
Arnur Nigmetov

In algorithms for finite metric spaces, it is common to assume that the distance between two points can be computed in constant time, and complexity bounds are expressed only in terms of the number of points of the metric space. We introduce a different model, where we assume that the computation of a single distance is an expensive operation and consequently, the goal is to minimize the number of such distance queries. This model is motivated by metric spaces that appear in the context of topological data analysis. We consider two standard operations on metric spaces, namely the construction of a [Formula: see text]-spanner and the computation of an approximate nearest neighbor for a given query point. In both cases, we partially explore the metric space through distance queries and infer lower and upper bounds for yet unexplored distances through triangle inequality. For spanners, we evaluate several exploration strategies through extensive experimental evaluation. For approximate nearest neighbors, we prove that our strategy returns an approximate nearest neighbor after a logarithmic number of distance queries.

2019 ◽  
Vol 72 (3) ◽  
pp. 774-804 ◽  
Author(s):  
Stephen J. Dilworth ◽  
Denka Kutzarova ◽  
Mikhail I. Ostrovskii

AbstractMain results of the paper are as follows:(1) For any finite metric space $M$ the Lipschitz-free space on $M$ contains a large well-complemented subspace that is close to $\ell _{1}^{n}$.(2) Lipschitz-free spaces on large classes of recursively defined sequences of graphs are not uniformly isomorphic to $\ell _{1}^{n}$ of the corresponding dimensions. These classes contain well-known families of diamond graphs and Laakso graphs.Interesting features of our approach are: (a) We consider averages over groups of cycle-preserving bijections of edge sets of graphs that are not necessarily graph automorphisms. (b) In the case of such recursive families of graphs as Laakso graphs, we use the well-known approach of Grünbaum (1960) and Rudin (1962) for estimating projection constants in the case where invariant projections are not unique.


2009 ◽  
Vol 20 (02) ◽  
pp. 313-329
Author(s):  
CHING-LUEH CHANG ◽  
YUH-DAUH LYUU ◽  
YEN-WU TI

Let L ≥ 1, ε > 0 be real numbers, (M, d) be a finite metric space and (N, ρ) be a metric space. A query to a metric space consists of a pair of points and asks for the distance between these points. We study the number of queries to metric spaces (M, d) and (N, ρ) needed to decide whether (M, d) is L-bilipschitz embeddable into (N, ρ) or ∊-far from being L-bilipschitz embeddable into N, ρ). When (M, d) is ∊-far from being L-bilipschitz embeddable into (N, ρ), we allow an o(1) probability of error (i.e., returning the wrong answer "L-bilipschitz embeddable"). However, no error is allowed when (M, d) is L-bilipschitz embeddable into (N, ρ). That is, algorithms with only one-sided errors are studied in this paper. When |M| ≤ |N| are both finite, we give an upper bound of [Formula: see text] on the number of queries for determining with one-sided error whether (M, d) is L-bilipschitz embeddable into (N, ρ) or ∊-far from being L-bilipschitz embeddable into (N, ρ). For the special case of finite |M| = |N|, the above upper bound evaluates to [Formula: see text]. We also prove a lower bound of Ω(|N|3/2) for the special case when |M| = |N| are finite and L = 1, which coincides with testing isometry between finite metric spaces. For finite |M| = |N|, the upper and lower bounds thus match up to a multiplicative factor of at most [Formula: see text], which depends only sublogarithmically in |N|. We also investigate the case when (N, ρ) is not necessarily finite. Our results are based on techniques developed in an earlier work on testing graph isomorphism.


2013 ◽  
Vol 56 (3) ◽  
pp. 519-535 ◽  
Author(s):  
TIMOTHY FAVER ◽  
KATELYNN KOCHALSKI ◽  
MATHAV KISHORE MURUGAN ◽  
HEIDI VERHEGGEN ◽  
ELIZABETH WESSON ◽  
...  

AbstractMotivated by a classical theorem of Schoenberg, we prove that an n + 1 point finite metric space has strict 2-negative type if and only if it can be isometrically embedded in the Euclidean space $\mathbb{R}^{n}$ of dimension n but it cannot be isometrically embedded in any Euclidean space $\mathbb{R}^{r}$ of dimension r < n. We use this result as a technical tool to study ‘roundness’ properties of additive metrics with a particular focus on ultrametrics and leaf metrics. The following conditions are shown to be equivalent for a metric space (X,d): (1) X is ultrametric, (2) X has infinite roundness, (3) X has infinite generalized roundness, (4) X has strict p-negative type for all p ≥ 0 and (5) X admits no p-polygonal equality for any p ≥ 0. As all ultrametric spaces have strict 2-negative type by (4) we thus obtain a short new proof of Lemin's theorem: Every finite ultrametric space is isometrically embeddable into some Euclidean space as an affinely independent set. Motivated by a question of Lemin, Shkarin introduced the class $\mathcal{M}$ of all finite metric spaces that may be isometrically embedded into ℓ2 as an affinely independent set. The results of this paper show that Shkarin's class $\mathcal{M}$ consists of all finite metric spaces of strict 2-negative type. We also note that it is possible to construct an additive metric space whose generalized roundness is exactly ℘ for each ℘ ∈ [1, ∞].


2009 ◽  
Vol 80 (3) ◽  
pp. 486-497 ◽  
Author(s):  
ANTHONY WESTON

AbstractDetermining meaningful lower bounds on the supremal strict p-negative type of classes of finite metric spaces is a difficult nonlinear problem. In this paper we use an elementary approach to obtain the following result: given a finite metric space (X,d) there is a constant ζ>0, dependent only on n=∣X∣ and the scaled diameter 𝔇=(diamX)/min{d(x,y)∣x⁄=y} of X (which we may assume is >1), such that (X,d) has p-negative type for all p∈[0,ζ] and strict p-negative type for all p∈[0,ζ). In fact, we obtain A consideration of basic examples shows that our value of ζ is optimal provided that 𝔇≤2. In other words, for each 𝔇∈(1,2] and natural number n≥3, there exists an n-point metric space of scaled diameter 𝔇 whose supremal strict p-negative type is exactly ζ. The results of this paper hold more generally for all finite semi-metric spaces since the triangle inequality is not used in any of the proofs. Moreover, ζ is always optimal in the case of finite semi-metric spaces.


10.29007/pw5g ◽  
2018 ◽  
Author(s):  
Larry Moss ◽  
Jayampathy Ratnayake ◽  
Robert Rose

This paper is a contribution to the presentation of fractal sets in terms of final coalgebras.The first result on this topic was Freyd's Theorem: the unit interval [0,1] is the final coalgebra ofa certain functor on the category of bipointed sets. Leinster 2011 offersa sweeping generalization of this result. He is able to represent many of what would be intuitivelycalled "self-similar" spaces using (a) bimodules (also called profunctors or distributors),(b) an examination of non-degeneracy conditions on functors of various sorts; (c) a construction offinal coalgebras for the types of functors of interest using a notion of resolution. In addition to thecharacterization of fractals sets as sets, his seminal paper also characterizes them as topological spaces.Our major contribution is to suggest that in many cases of interest, point (c) above on resolutionsis not needed in the construction of final coalgebras. Instead, one may obtain a number of spaces ofinterest as the Cauchy completion of an initial algebra,and this initial algebra is the set of points in a colimit of an omega-sequence of finite metric spaces.This generalizes Hutchinson's 1981 characterization of fractal attractors asclosures of the orbits of the critical points. In addition to simplifying the overall machinery, it also presents a metric space which is ``computationally related'' to the overall fractal. For example, when applied to Freyd's construction, our method yields the metric space.of dyadic rational numbers in [0,1].Our second contribution is not completed at this time, but it is a set of results on \emph{metric space}characterizations of final coalgebras. This point was raised as an open issue in Hasuo, Jacobs, and Niqui 2010,and our interest in quotient metrics comes from their paper. So in terms of (a)--(c) above, our workdevelops (a) and (b) in metric settings while dropping (c).


2018 ◽  
Vol 61 (1) ◽  
pp. 33-47 ◽  
Author(s):  
S. OSTROVSKA ◽  
M. I. OSTROVSKII

AbstractGiven a Banach spaceXand a real number α ≥ 1, we write: (1)D(X) ≤ α if, for any locally finite metric spaceA, all finite subsets of which admit bilipschitz embeddings intoXwith distortions ≤C, the spaceAitself admits a bilipschitz embedding intoXwith distortion ≤ α ⋅C; (2)D(X) = α+if, for every ϵ > 0, the conditionD(X) ≤ α + ϵ holds, whileD(X) ≤ α does not; (3)D(X) ≤ α+ifD(X) = α+orD(X) ≤ α. It is known thatD(X) is bounded by a universal constant, but the available estimates for this constant are rather large. The following results have been proved in this work: (1)D((⊕n=1∞Xn)p) ≤ 1+for every nested family of finite-dimensional Banach spaces {Xn}n=1∞and every 1 ≤p≤ ∞. (2)D((⊕n=1∞ℓ∞n)p) = 1+for 1 <p< ∞. (3)D(X) ≤ 4+for every Banach spaceXwith no nontrivial cotype. Statement (3) is a strengthening of the Baudier–Lancien result (2008).


2021 ◽  
pp. 1-32
Author(s):  
Jacob Billings ◽  
Manish Saggar ◽  
Jaroslav Hlinka ◽  
Shella Keilholz ◽  
Giovanni Petri

Whereas brain imaging tools like functional Magnetic Resonance Imaging (fMRI) afford measurements of whole-brain activity, it remains unclear how best to interpret patterns found amid the data’s apparent self-organization. To clarify how patterns of brain activity support brain function, one might identify metric spaces that optimally distinguish brain states across experimentally defined conditions. Therefore, the present study considers the relative capacities of several metric spaces to disambiguate experimentally defined brain states. One fundamental metric space interprets fMRI data topographically, i.e, as the vector of amplitudes of a multivariate signal, changing with time. Another perspective compares the brain’s Functional Connectivity, i.e., the similarity matrix computed between signals from different brain regions. More recently, metric spaces that consider the data’s topology have become available. Such methods treat data as a sample drawn from an abstract geometric object. To recover the structure of that object, topological data analysis detects features that are invariant under continuous deformations (such as coordinate rotation and nodal misalignment). Moreover, the methods explicitly consider features that persist across multiple geometric scales. While, certainly, there are strengths and weaknesses of each brain dynamics metric space, we find that those that track topological features optimally distinguish experimentally defined brain states.


2013 ◽  
Vol 1 ◽  
pp. 200-231 ◽  
Author(s):  
Andrea C.G. Mennucci

Abstract In this paper we discuss asymmetric length structures and asymmetric metric spaces. A length structure induces a (semi)distance function; by using the total variation formula, a (semi)distance function induces a length. In the first part we identify a topology in the set of paths that best describes when the above operations are idempotent. As a typical application, we consider the length of paths defined by a Finslerian functional in Calculus of Variations. In the second part we generalize the setting of General metric spaces of Busemann, and discuss the newly found aspects of the theory: we identify three interesting classes of paths, and compare them; we note that a geodesic segment (as defined by Busemann) is not necessarily continuous in our setting; hence we present three different notions of intrinsic metric space.


Sign in / Sign up

Export Citation Format

Share Document