ON THE RELATIONSHIP BETWEEN THE CLASS OF A LIE ALGEBRA AND THE CLASSES OF ITS SUBALGEBRAS

2008 ◽  
Vol 18 (01) ◽  
pp. 83-95 ◽  
Author(s):  
SUTHATHIP SUANMALI

A classical nilpotency result considers finite p-groups whose proper subgroups all have class bounded by a fixed number n. We consider the analogous property in nilpotent Lie algebras. In particular, we investigate whether this condition puts a bound on the class of the Lie algebra. Some p-group results and proofs carry over directly to the Lie algebra case, some carry over with modified proofs and some fail. For the final of these cases, a certain metabelian Lie algebra is constructed to show a case when the p-groups and Lie algebra cases differ.

2007 ◽  
Vol 17 (03) ◽  
pp. 527-555 ◽  
Author(s):  
YOU'AN CAO ◽  
DEZHI JIANG ◽  
JUNYING WANG

Let L be a finite-dimensional complex simple Lie algebra, Lℤ be the ℤ-span of a Chevalley basis of L and LR = R⊗ℤLℤ be a Chevalley algebra of type L over a commutative ring R. Let [Formula: see text] be the nilpotent subalgebra of LR spanned by the root vectors associated with positive roots. The aim of this paper is to determine the automorphism group of [Formula: see text].


2015 ◽  
Vol 22 (2) ◽  
Author(s):  
Michel Goze ◽  
Elisabeth Remm

AbstractThe classification of complex or real finite dimensional Lie algebras which are not semi simple is still in its early stages. For example, the nilpotent Lie algebras are classified only up to dimension 7. Moreover, to recognize a given Lie algebra in the classification list is not so easy. In this work, we propose a different approach to this problem. We determine families for some fixed invariants and the classification follows by a deformation process or a contraction process. We focus on the case of 2- and 3-step nilpotent Lie algebras. We describe in both cases a deformation cohomology for this type of algebras and the algebras which are rigid with respect to this cohomology. Other


2018 ◽  
Vol 18 (2) ◽  
pp. 237-263 ◽  
Author(s):  
Christian Autenried ◽  
Kenro Furutani ◽  
Irina Markina ◽  
Alexander Vasiľev

Abstract The metric approach to studying 2-step nilpotent Lie algebras by making use of non-degenerate scalar products is realised. We show that a 2-step nilpotent Lie algebra is isomorphic to its standard pseudo-metric form, that is a 2-step nilpotent Lie algebra endowed with some standard non-degenerate scalar product compatible with the Lie bracket. This choice of the standard pseudo-metric form allows us to study the isomorphism properties. If the elements of the centre of the standard pseudo-metric form constitute a Lie triple system of the pseudo-orthogonal Lie algebra, then the original 2-step nilpotent Lie algebra admits integer structure constants. Among particular applications we prove that pseudo H-type algebras have bases with rational structure constants, which implies that the corresponding pseudo H-type groups admit lattices.


1999 ◽  
Vol 42 (3) ◽  
pp. 521-540 ◽  
Author(s):  
V. R. Varea

This paper is concerned with the relationship between the properties of the subalgebra lattice ℒ(L) of a Lie algebra L and the structure of L. If the lattice ℒ(L) is lower semimodular, then the Lie algebra L is said to be lower semimodular. If a subalgebra S of L is a modular element in the lattice ℒ(L), then S is called a modular subalgebra of L. The easiest condition to ensure that L is lower semimodular is that dim A/B = 1 whenever B < A ≤ L and B is maximal in A (Lie algebras satisfying this condition are called sχ-algebras). Our aim is to characterize lower semimodular Lie algebras and sχ-algebras, over any field of characteristic greater than three. Also, we obtain results about the influence of two solvable modularmaximal subalgebras on the structure of the Lie algebra and some results on the structure of Lie algebras all of whose maximal subalgebras are modular.


2012 ◽  
Vol 11 (01) ◽  
pp. 1250001 ◽  
Author(s):  
ALI REZA SALEMKAR ◽  
SARA CHEHRAZI ◽  
SOMAIEH ALIZADEH NIRI

Given a maximal subalgebra M of a finite-dimensional Lie algebra L, a θ-pair for M is a pair (A, B) of subalgebras such that A ≰ M, B is an ideal of L contained in A ∩ M, and A/B includes properly no nonzero ideal of L/B. This is analogous to the concept of θ-pairs associated to maximal subgroups of a finite group, which has been studied by a number of authors. A θ-pair (A, B) for M is said to be maximal if M has no θ-pair (C, D) such that A < C. In this paper, we obtain some properties of maximal θ-pairs and use them to give some characterizations of solvable, supersolvable and nilpotent Lie algebras.


2018 ◽  
Vol 30 (1) ◽  
pp. 109-128 ◽  
Author(s):  
Leonardo Bagaglini ◽  
Marisa Fernández ◽  
Anna Fino

Abstract We show obstructions to the existence of a coclosed {\mathrm{G}_{2}} -structure on a Lie algebra {\mathfrak{g}} of dimension seven with non-trivial center. In particular, we prove that if there exists a Lie algebra epimorphism from {\mathfrak{g}} to a six-dimensional Lie algebra {\mathfrak{h}} , with the kernel contained in the center of {\mathfrak{g}} , then any coclosed {\mathrm{G}_{2}} -structure on {\mathfrak{g}} induces a closed and stable three form on {\mathfrak{h}} that defines an almost complex structure on {\mathfrak{h}} . As a consequence, we obtain a classification of the 2-step nilpotent Lie algebras which carry coclosed {\mathrm{G}_{2}} -structures. We also prove that each one of these Lie algebras has a coclosed {\mathrm{G}_{2}} -structure inducing a nilsoliton metric, but this is not true for 3-step nilpotent Lie algebras with coclosed {\mathrm{G}_{2}} -structures. The existence of contact metric structures is also studied.


2011 ◽  
Vol DMTCS Proceedings vol. AO,... (Proceedings) ◽  
Author(s):  
Federico Ardila ◽  
Thomas Bliem ◽  
Dido Salazar

International audience Stanley (1986) showed how a finite partially ordered set gives rise to two polytopes, called the order polytope and chain polytope, which have the same Ehrhart polynomial despite being quite different combinatorially. We generalize his result to a wider family of polytopes constructed from a poset P with integers assigned to some of its elements. Through this construction, we explain combinatorially the relationship between the Gelfand–Tsetlin polytopes (1950) and the Feigin–Fourier–Littelmann–Vinberg polytopes (2010, 2005), which arise in the representation theory of the special linear Lie algebra. We then use the generalized Gelfand–Tsetlin polytopes of Berenstein and Zelevinsky (1989) to propose conjectural analogues of the Feigin–Fourier–Littelmann–Vinberg polytopes corresponding to the symplectic and odd orthogonal Lie algebras. Stanley (1986) a montré que chaque ensemble fini partiellement ordonné permet de définir deux polyèdres, le polyèdre de l'ordre et le polyèdre des cha\^ınes. Ces polyèdres ont le même polynôme de Ehrhart, bien qu'ils soient tout à fait distincts du point de vue combinatoire. On généralise ce résultat à une famille plus générale de polyèdres, construits à partir d'un ensemble partiellement ordonné ayant des entiers attachés à certains de ses éléments. Par cette construction, on explique en termes combinatoires la relation entre les polyèdres de Gelfand-Tsetlin (1950) et ceux de Feigin-Fourier-Littelmann-Vinberg (2010, 2005), qui apparaissent dans la théorie des représentations des algèbres de Lie linéaires spéciales. On utilise les polyèdres de Gelfand-Tsetlin généralisés par Berenstein et Zelevinsky (1989) afin d'obtenir des analogues (conjecturés) des polytopes de Feigin-Fourier-Littelmann-Vinberg pour les algèbres de Lie symplectiques et orthogonales impaires.


2019 ◽  
Vol 19 (01) ◽  
pp. 2050012
Author(s):  
Farangis Johari ◽  
Peyman Niroomand

By considering the nilpotent Lie algebra with the derived subalgebra of dimension [Formula: see text], we compute some functors including the Schur multiplier, the exterior square and the tensor square of these Lie algebras. We also give the corank of such Lie algebras.


Author(s):  
E. M. Patterson

SynopsisBy examining certain connections between the derivatives and the powers of a Lie algebra, bounds are obtained for the indices of nilpotent Lie algebras over an arbitrary field. The results are used to obtain bounds for the indices of solvable Lie algebras over a field of characteristic zero.


Sign in / Sign up

Export Citation Format

Share Document