Hausdorff series in a semigroup ring

2020 ◽  
Vol 30 (04) ◽  
pp. 853-859
Author(s):  
Şehmus Fındık ◽  
Osman Kelekci̇

Let [Formula: see text] and [Formula: see text] be the semigroup rings spanned on the right zero semigroup [Formula: see text], and on the left zero semigroup [Formula: see text], respectively, together with the identity element [Formula: see text]. We suggest a closed formula solving the equation [Formula: see text] which is the evolution of the Campbell–Baker–Hausdorff formula given by the Hausdorff series [Formula: see text] where [Formula: see text], in the algebras [Formula: see text] and [Formula: see text].

2018 ◽  
Vol 10 (02) ◽  
pp. 1850024
Author(s):  
Nuttawoot Nupo ◽  
Sayan Panma

Let [Formula: see text] denote the Cayley digraph of the rectangular group [Formula: see text] with respect to the connection set [Formula: see text] in which the rectangular group [Formula: see text] is isomorphic to the direct product of a group, a left zero semigroup, and a right zero semigroup. An independent dominating set of [Formula: see text] is the independent set of elements in [Formula: see text] that can dominate the whole elements. In this paper, we investigate the independent domination number of [Formula: see text] and give more results on Cayley digraphs of left groups and right groups which are specific cases of rectangular groups. Moreover, some results of the path independent domination number of [Formula: see text] are also shown.


2009 ◽  
Vol 19 (01) ◽  
pp. 79-95 ◽  
Author(s):  
VICTOR MALTCEV

In this paper we characterize when a Cayley automaton semigroup is finite, is free, is a left zero semigroup, is a right zero semigroup, is a group, or is trivial. We also introduce dual Cayley automaton semigroups and discuss when they are finite.


2016 ◽  
Vol 16 (09) ◽  
pp. 1750164
Author(s):  
E. Hashemi ◽  
A. As. Estaji ◽  
A. Alhevaz

The study of rings with right Property ([Formula: see text]), has done an important role in noncommutative ring theory. Following literature, a ring [Formula: see text] has right Property ([Formula: see text]) if every finitely generated two-sided ideal consisting entirely of left zero-divisors has a nonzero right annihilator. Our results in this paper concerns the right Property ([Formula: see text]) of Ore extensions as well as skew power series rings. We will show that if [Formula: see text] is a right duo ring, then the skew power series ring [Formula: see text] has right Property ([Formula: see text]), when [Formula: see text] is right Noetherian and [Formula: see text]-compatible. Moreover, for a right duo ring [Formula: see text] which is [Formula: see text]-compatible, it is shown that (i) the Ore extension ring [Formula: see text] has right Property ([Formula: see text]) and (ii) [Formula: see text] is right zip if and only if [Formula: see text] is right zip. As a corollary of our results, we provide answers to some open questions related to Property [Formula: see text], raised in [C. Y. Hong, N. K. Kim, Y. Lee and S. J. Ryu, Rings with Property ([Formula: see text]) and their extensions, J. Algebra 315 (2007) 612–628].


1980 ◽  
Vol 32 (6) ◽  
pp. 1361-1371 ◽  
Author(s):  
Bonnie R. Hardy ◽  
Thomas S. Shores

Throughout this paper the ring R and the semigroup S are commutative with identity; moreover, it is assumed that S is cancellative, i.e., that S can be embedded in a group. The aim of this note is to determine necessary and sufficient conditions on R and S that the semigroup ring R[S] should be one of the following types of rings: principal ideal ring (PIR), ZPI-ring, Bezout, semihereditary or arithmetical. These results shed some light on the structure of semigroup rings and provide a source of examples of the rings listed above. They also play a key role in the determination of all commutative reduced arithmetical semigroup rings (without the cancellative hypothesis on S) which will appear in a forthcoming paper by Leo Chouinard and the authors [4].


2019 ◽  
Vol 31 (3) ◽  
pp. 543-562 ◽  
Author(s):  
Viviane Beuter ◽  
Daniel Gonçalves ◽  
Johan Öinert ◽  
Danilo Royer

Abstract Given a partial action π of an inverse semigroup S on a ring {\mathcal{A}} , one may construct its associated skew inverse semigroup ring {\mathcal{A}\rtimes_{\pi}S} . Our main result asserts that, when {\mathcal{A}} is commutative, the ring {\mathcal{A}\rtimes_{\pi}S} is simple if, and only if, {\mathcal{A}} is a maximal commutative subring of {\mathcal{A}\rtimes_{\pi}S} and {\mathcal{A}} is S-simple. We apply this result in the context of topological inverse semigroup actions to connect simplicity of the associated skew inverse semigroup ring with topological properties of the action. Furthermore, we use our result to present a new proof of the simplicity criterion for a Steinberg algebra {A_{R}(\mathcal{G})} associated with a Hausdorff and ample groupoid {\mathcal{G}} .


1988 ◽  
Vol 110 ◽  
pp. 113-128 ◽  
Author(s):  
Lê Tuân Hoa

Let N denote the set of non-negative integers. An affine semigroup is a finitely generated submonoid S of the additive monoid Nm for some positive integer m. Let k[S] denote the semigroup ring of S over a field k. Then one can identify k[S] with the subring of a polynomial ring k[t1, …, tm] generated by the monomials .


1996 ◽  
Vol 19 (3) ◽  
pp. 507-520 ◽  
Author(s):  
Yue-Chan Phoebe Ho

LetSbe a completely0-simple semigroup andFbe an algebraically closed field. Then for each0-minimal right idealMofS,M=B∪C∪{0}, whereBis a right group andCis a zero semigroup. Also, a matrix representation forSother than Rees matrix is found for the condition that the semigroup ringR(F,S)is semisimple Artinian.


2007 ◽  
Vol 06 (04) ◽  
pp. 655-669 ◽  
Author(s):  
ANN DOOMS ◽  
PAULA M. VELOSO

In this article, we introduce the normalizer [Formula: see text] of a subset X of a ring R (with identity) in the unit group [Formula: see text] and consider, in particular, the normalizer of the natural basis ±S of the integral semigroup ring ℤ0S of a finite semigroup S. We investigate properties of this normalizer for the class of semigroup rings of inverse semigroups, which contains, for example, matrix rings, in particular, matrix rings over group rings, and partial group rings. We also construct free groups in the unit group of an integral semigroup ring of a Brandt semigroup using a bicyclic unit.


2013 ◽  
Vol 63 (1) ◽  
Author(s):  
Jeong Han ◽  
Hee Kim ◽  
J. Neggers

AbstractIn this paper we introduce for an arbitrary algebra (groupoid, binary system) (X; *) a sequence of algebras (X; *)n = (X; ∘), where x ∘ y = [x * y]n = x * [x * y]n−1, [x * y]0 = y. For several classes of examples we study the cycloidal index (m, n) of (X; *), where (X; *)m = (X; *)n for m > n and m is minimal with this property. We show that (X; *) satisfies the left cancellation law, then if (X; *)m = (X; *)n, then also (X; *)m−n = (X; *)0, the right zero semigroup. Finite algebras are shown to have cycloidal indices (as expected). B-algebras are considered in greater detail. For commutative rings R with identity, x * y = ax + by + c, a, b, c ∈ ℝ defines a linear product and for such linear products the commutativity condition [x * y]n = [y * x]n is observed to be related to the golden section, the classical one obtained for ℝ, the real numbers, n = 2 and a = 1 as the coefficient b.


1980 ◽  
Vol 21 (1) ◽  
pp. 131-134 ◽  
Author(s):  
Mark L. Teply

If R is a ring and S is a semigroup, the corresponding semigroup ring is denoted by R[S]. A ring is semiprime if it has no nonzero nilpotent ideals. A semigroup S is a semilattice P of semigroups Sα if there exists a homomorphism φ of S onto the semilattice P such that Sα = αφ−1 for each α ∈ P.


Sign in / Sign up

Export Citation Format

Share Document