A hydrodynamic model for the interaction of Cucker–Smale particles and incompressible fluid

2014 ◽  
Vol 24 (11) ◽  
pp. 2311-2359 ◽  
Author(s):  
Seung-Yeal Ha ◽  
Moon-Jin Kang ◽  
Bongsuk Kwon

We present a new hydrodynamic model for the interactions between collision-free Cucker–Smale flocking particles and a viscous incompressible fluid. Our proposed model consists of two hydrodynamic models. For the Cucker–Smale flocking particles, we employ the pressureless Euler system with a non-local flocking dissipation, whereas for the fluid, we use the incompressible Navier–Stokes equations. These two hydrodynamic models are coupled through a drag force, which is the main flocking mechanism between the particles and the fluid. The flocking mechanism between particles is regulated by the Cucker–Smale model, which accelerates global flocking between the particles and the fluid. We show that this model admits the global-in-time classical solutions, and exhibits time-asymptotic flocking, provided that the initial data is appropriately small. In the course of our analysis for the proposed system, we first consider the hydrodynamic Cucker–Smale equations (the pressureless Euler system with a non-local flocking dissipation), for which the global existence and the time-asymptotic behavior of the classical solutions are also investigated.

2019 ◽  
Vol 40 (4) ◽  
pp. 2377-2398
Author(s):  
Gabriel R Barrenechea ◽  
Andreas Wachtel

Abstract Uniform inf-sup conditions are of fundamental importance for the finite element solution of problems in incompressible fluid mechanics, such as the Stokes and Navier–Stokes equations. In this work we prove a uniform inf-sup condition for the lowest-order Taylor–Hood pairs $\mathbb{Q}_2\times \mathbb{Q}_1$ and $\mathbb{P}_2\times \mathbb{P}_1$ on a family of affine anisotropic meshes. These meshes may contain refined edge and corner patches. We identify necessary hypotheses for edge patches to allow uniform stability and sufficient conditions for corner patches. For the proof, we generalize Verfürth’s trick and recent results by some of the authors. Numerical evidence confirms the theoretical results.


Sign in / Sign up

Export Citation Format

Share Document