scholarly journals Acoustic transmission problems: Wavenumber-explicit bounds and resonance-free regions

2019 ◽  
Vol 29 (02) ◽  
pp. 317-354 ◽  
Author(s):  
Andrea Moiola ◽  
Euan A. Spence

We consider the Helmholtz transmission problem with one penetrable star-shaped Lipschitz obstacle. Under a natural assumption about the ratio of the wavenumbers, we prove bounds on the solution in terms of the data, with these bounds explicit in all parameters. In particular, the (weighted) [Formula: see text] norm of the solution is bounded by the [Formula: see text] norm of the source term, independently of the wavenumber. These bounds then imply the existence of a resonance-free strip beneath the real axis. The main novelty is that the only comparable results currently in the literature are for smooth, convex obstacles with strictly positive curvature, while here we assume only Lipschitz regularity and star-shapedness with respect to a point. Furthermore, our bounds are obtained using identities first introduced by Morawetz (essentially integration by parts), whereas the existing bounds use the much-more sophisticated technology of microlocal analysis and propagation of singularities. We also adapt existing results to show that if the assumption on the wavenumbers is lifted, then no bound with polynomial dependence on the wavenumber is possible.


2015 ◽  
Vol 75 (3) ◽  
pp. 929-952 ◽  
Author(s):  
Yassine Boubendir ◽  
Víctor Domínguez ◽  
David Levadoux ◽  
Catalin Turc


2011 ◽  
Vol 11 (01) ◽  
pp. 197-214 ◽  
Author(s):  
WENHUI MENG ◽  
JUNZHI CUI

The fast multipole method (FMM) is an effective approach for accelerating the computation efficiency of the boundary element method (BEM) in solving problems that are computationally intensive. This paper presents two different BEMs, i.e., Kress' and Seydou's methods, for solving two-dimensional (2D) acoustic transmission problems with a multilayered obstacle, along with application of the FMM to solution of the related boundary integral equations. Conventional BEM requires O(MN2) operations to compute the equations for this problem. By using the FMM, both the amount of computation and the memory requirement of the BEM are reduced to order O(MN), where M is the number of layers of the obstacle. The efficiency and accuracy of this approach in dealing with the acoustic transmission problems containing a multilayered obstacle are demonstrated in the numerical examples. It is confirmed that this approach can be applied to solving the acoustic transmission problems for an obstacle with multilayers.



2005 ◽  
Vol 72 ◽  
pp. 177-188 ◽  
Author(s):  
Félix M. Goñi ◽  
F-Xabier Contreras ◽  
L-Ruth Montes ◽  
Jesús Sot ◽  
Alicia Alonso

In the past decade, the long-neglected ceramides (N-acylsphingosines) have become one of the most attractive lipid molecules in molecular cell biology, because of their involvement in essential structures (stratum corneum) and processes (cell signalling). Most natural ceramides have a long (16-24 C atoms) N-acyl chain, but short N-acyl chain ceramides (two to six C atoms) also exist in Nature, apart from being extensively used in experimentation, because they can be dispersed easily in water. Long-chain ceramides are among the most hydrophobic molecules in Nature, they are totally insoluble in water and they hardly mix with phospholipids in membranes, giving rise to ceramide-enriched domains. In situ enzymic generation, or external addition, of long-chain ceramides in membranes has at least three important effects: (i) the lipid monolayer tendency to adopt a negative curvature, e.g. through a transition to an inverted hexagonal structure, is increased, (ii) bilayer permeability to aqueous solutes is notoriously enhanced, and (iii) transbilayer (flip-flop) lipid motion is promoted. Short-chain ceramides mix much better with phospholipids, promote a positive curvature in lipid monolayers, and their capacities to increase bilayer permeability or transbilayer motion are very low or non-existent.



Kerntechnik ◽  
2019 ◽  
Vol 84 (2) ◽  
pp. 99-109
Author(s):  
K. Mehboob ◽  
M. S. Aljohani
Keyword(s):  


2000 ◽  
Author(s):  
Ian R. Young ◽  
Michael L. Banner ◽  
Mark M. Donelan
Keyword(s):  




1995 ◽  
Author(s):  
M.J. Sagartz
Keyword(s):  


Sign in / Sign up

Export Citation Format

Share Document