Improvement of Robot Sensor by Integrating Information Using Neural Network

2003 ◽  
Vol 12 (02) ◽  
pp. 139-152 ◽  
Author(s):  
Hiromi Takeuchi ◽  
Yoshifumi Terabayashi ◽  
Koichiro Yamauchi ◽  
Naohiro Ishii

Recently, the improvement of robotics makes us feel the robot to be more familiar to human activities. For example, robot's motion similar to human movement is also developed. However, in order for a robot to play an active part in the medical and welfare field, the sensors of the robot will be important to have effective functions for robot's safety actions. Our approach is applying intelligent processing technology for the sensors by using neural networks. Our purpose is making recognition system with several sensors. We developed a sensory integrating system by the neural network and apply the system to the robotics. This robot can track the target by applying integrated neural system. We extend the robot system to avoid obstacles, which is based on a subsumption architecture.

2007 ◽  
Vol 2007 ◽  
pp. 1-6 ◽  
Author(s):  
Bekir Karlık ◽  
Kemal Yüksek

The aim of this study is to develop a novel fuzzy clustering neural network (FCNN) algorithm as pattern classifiers for real-time odor recognition system. In this type of FCNN, the input neurons activations are derived through fuzzy c mean clustering of the input data, so that the neural system could deal with the statistics of the measurement error directly. Then the performance of FCNN network is compared with the other network which is well-known algorithm, named multilayer perceptron (MLP), for the same odor recognition system. Experimental results show that both FCNN and MLP provided high recognition probability in determining various learn categories of odors, however, the FCNN neural system has better ability to recognize odors more than the MLP network.


2013 ◽  
Vol 756-759 ◽  
pp. 2438-2442 ◽  
Author(s):  
Hao Xu ◽  
Jin Gang Lai ◽  
Jiao Yu Liu ◽  
Neng Cao ◽  
Juan Zhao

many functions are possessed by the neural network such as parallel processing, self-learning and self-adapting. It could approximate any nonlinear function with any precision. A very effective way is provided by the neural network to deal with complex control problems, such as nonlinear, multivariable and uncertain ones etc. Therefore, the neural network is widely used in many aspects: pattern recognition, system identification and control fields and so on.It is developed in the paper about the application of neural networks pattern recognition and system identification. With MATLAB 6.1 and Visual Basic 6.0 design platform and developing tool, for some application instances, implement modeling, simulation and systematic test tasks of the neural networks pattern recognition and system identification. The above research and instances indicate that the neural networks pattern recognition and system identification based on MATLAB have better application prospects.


Connectivity ◽  
2020 ◽  
Vol 148 (6) ◽  
Author(s):  
R. D. Bukov ◽  
◽  
I. S. Shcherbyna ◽  
O. V. Nehodenko ◽  
Ye. S. Tykhonov

This article discusses the problem of the application of neural networks for character recognition, as well as the problem of developing methods and algorithms for the synthesis of neural networks. To solve the problems of optimizing the character recognition system, highly intelligent systems based on artificial neural networks are often used. However, artificial neural networks are not a tool for solving problems of any type. They are unsuitable for tasks such as payroll, but they have an advantage for character recognition tasks that conventional personal computers do poorly or not at all. It has been proven that artificial neural networks can be used for predictive modeling, adaptive control and applications where they can be trained using a dataset. Experiential self-learning can occur in networks that can draw inferences from a complex and seemingly unrelated set of information. The application of neural networks for solving practical problems in the field of character recognition and their classification is shown. It has been established that images can denote objects of different nature: text symbols, images, sound samples. When training the network, various sample images are offered with an indication of which class they belong to. At the end of training the network, you can present previously unknown images and receive an answer from it about belonging to a certain class. The topology of such a network is characterized by the fact that the number of neurons in the output layer, as a rule, is equal to the number of conditioned classes. This establishes a correspondence between the output of the neural network and the class it represents. A method for training a neural network is proposed, according to which the person managing the network takes a direct part in training the network, it itself sets the reference images of all symbols, as well as distorted images of the standards (plagued copies).


Author(s):  
D.J. Samatha Naidu ◽  
T. Mahammad Rafi

Handwritten character Recognition is one of the active area of research where deep neural networks are been utilized. Handwritten character Recognition is a challenging task because of many reasons. The Primary reason is different people have different styles of handwriting. The secondary reason is there are lot of characters like capital letters, small letters & special symbols. In existing were immense research going on the field of handwritten character recognition system has been design using fuzzy logic and created on VLSI(very large scale integrated)structure. To Recognize the tamil characters they have use neural networks with the Kohonen self-organizing map(SOM) which is an unsupervised neural networks. In proposed system this project design a image segmentation based hand written character recognition system. The convolutional neural network is the current state of neural network which has wide application in fields like image, video recognition. The system easily identify or easily recognize text in English languages and letters, digits. By using Open cv for performing image processing and having tensor flow for training the neural network. To develop this concept proposing the innovative method for offline handwritten characters. detection using deep neural networks using python programming language.


2020 ◽  
Vol 2020 (10) ◽  
pp. 54-62
Author(s):  
Oleksii VASYLIEV ◽  

The problem of applying neural networks to calculate ratings used in banking in the decision-making process on granting or not granting loans to borrowers is considered. The task is to determine the rating function of the borrower based on a set of statistical data on the effectiveness of loans provided by the bank. When constructing a regression model to calculate the rating function, it is necessary to know its general form. If so, the task is to calculate the parameters that are included in the expression for the rating function. In contrast to this approach, in the case of using neural networks, there is no need to specify the general form for the rating function. Instead, certain neural network architecture is chosen and parameters are calculated for it on the basis of statistical data. Importantly, the same neural network architecture can be used to process different sets of statistical data. The disadvantages of using neural networks include the need to calculate a large number of parameters. There is also no universal algorithm that would determine the optimal neural network architecture. As an example of the use of neural networks to determine the borrower's rating, a model system is considered, in which the borrower's rating is determined by a known non-analytical rating function. A neural network with two inner layers, which contain, respectively, three and two neurons and have a sigmoid activation function, is used for modeling. It is shown that the use of the neural network allows restoring the borrower's rating function with quite acceptable accuracy.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Idris Kharroubi ◽  
Thomas Lim ◽  
Xavier Warin

AbstractWe study the approximation of backward stochastic differential equations (BSDEs for short) with a constraint on the gains process. We first discretize the constraint by applying a so-called facelift operator at times of a grid. We show that this discretely constrained BSDE converges to the continuously constrained one as the mesh grid converges to zero. We then focus on the approximation of the discretely constrained BSDE. For that we adopt a machine learning approach. We show that the facelift can be approximated by an optimization problem over a class of neural networks under constraints on the neural network and its derivative. We then derive an algorithm converging to the discretely constrained BSDE as the number of neurons goes to infinity. We end by numerical experiments.


2021 ◽  
Vol 11 (11) ◽  
pp. 4758
Author(s):  
Ana Malta ◽  
Mateus Mendes ◽  
Torres Farinha

Maintenance professionals and other technical staff regularly need to learn to identify new parts in car engines and other equipment. The present work proposes a model of a task assistant based on a deep learning neural network. A YOLOv5 network is used for recognizing some of the constituent parts of an automobile. A dataset of car engine images was created and eight car parts were marked in the images. Then, the neural network was trained to detect each part. The results show that YOLOv5s is able to successfully detect the parts in real time video streams, with high accuracy, thus being useful as an aid to train professionals learning to deal with new equipment using augmented reality. The architecture of an object recognition system using augmented reality glasses is also designed.


Author(s):  
Saša Vasiljević ◽  
Jasna Glišović ◽  
Nadica Stojanović ◽  
Ivan Grujić

According to the World Health Organization, air pollution with PM10 and PM2.5 (PM-particulate matter) is a significant problem that can have serious consequences for human health. Vehicles, as one of the main sources of PM10 and PM2.5 emissions, pollute the air and the environment both by creating particles by burning fuel in the engine, and by wearing of various elements in some vehicle systems. In this paper, the authors conducted the prediction of the formation of PM10 and PM2.5 particles generated by the wear of the braking system using a neural network (Artificial Neural Networks (ANN)). In this case, the neural network model was created based on the generated particles that were measured experimentally, while the validity of the created neural network was checked by means of a comparative analysis of the experimentally measured amount of particles and the prediction results. The experimental results were obtained by testing on an inertial braking dynamometer, where braking was performed in several modes, that is under different braking parameters (simulated vehicle speed, brake system pressure, temperature, braking time, braking torque). During braking, the concentration of PM10 and PM2.5 particles was measured simultaneously. The total of 196 measurements were performed and these data were used for training, validation, and verification of the neural network. When it comes to simulation, a comparison of two types of neural networks was performed with one output and with two outputs. For each type, network training was conducted using three different algorithms of backpropagation methods. For each neural network, a comparison of the obtained experimental and simulation results was performed. More accurate prediction results were obtained by the single-output neural network for both particulate sizes, while the smallest error was found in the case of a trained neural network using the Levenberg-Marquardt backward propagation algorithm. The aim of creating such a prediction model is to prove that by using neural networks it is possible to predict the emission of particles generated by brake wear, which can be further used for modern traffic systems such as traffic control. In addition, this wear algorithm could be applied on other vehicle systems, such as a clutch or tires.


Electronics ◽  
2020 ◽  
Vol 9 (9) ◽  
pp. 1526 ◽  
Author(s):  
Choongmin Kim ◽  
Jacob A. Abraham ◽  
Woochul Kang ◽  
Jaeyong Chung

Crossbar-based neuromorphic computing to accelerate neural networks is a popular alternative to conventional von Neumann computing systems. It is also referred as processing-in-memory and in-situ analog computing. The crossbars have a fixed number of synapses per neuron and it is necessary to decompose neurons to map networks onto the crossbars. This paper proposes the k-spare decomposition algorithm that can trade off the predictive performance against the neuron usage during the mapping. The proposed algorithm performs a two-level hierarchical decomposition. In the first global decomposition, it decomposes the neural network such that each crossbar has k spare neurons. These neurons are used to improve the accuracy of the partially mapped network in the subsequent local decomposition. Our experimental results using modern convolutional neural networks show that the proposed method can improve the accuracy substantially within about 10% extra neurons.


1991 ◽  
Vol 45 (10) ◽  
pp. 1706-1716 ◽  
Author(s):  
Mark Glick ◽  
Gary M. Hieftje

Artificial neural networks were constructed for the classification of metal alloys based on their elemental constituents. Glow discharge-atomic emission spectra obtained with a photodiode array spectrometer were used in multivariate calibrations for 7 elements in 37 Ni-based alloys (different types) and 15 Fe-based alloys. Subsets of the two major classes formed calibration sets for stepwise multiple linear regression. The remaining samples were used to validate the calibration models. Reference data from the calibration sets were then pooled into a single set to train neural networks with different architectures and different training parameters. After the neural networks learned to discriminate correctly among alloy classes in the training set, their ability to classify samples in the testing set was measured. In general, the neural network approach performed slightly better than the K-nearest neighbor method, but it suffered from a hidden classification mechanism and nonunique solutions. The neural network methodology is discussed and compared with conventional sample-classification techniques, and multivariate calibration of glow discharge spectra is compared with conventional univariate calibration.


Sign in / Sign up

Export Citation Format

Share Document