STOCHASTIC RESOURCE ALLOCATION IN MULTIAGENT ENVIRONMENTS: AN APPROACH BASED ON DISTRIBUTED Q-VALUES AND BOUNDED REAL-TIME DYNAMIC PROGRAMMING

2012 ◽  
Vol 21 (01) ◽  
pp. 1250003 ◽  
Author(s):  
PIERRICK PLAMONDON ◽  
BRAHIM CHAIB-DRAA

This paper contributes to solve effectively stochastic resource allocation problems in multiagent environments. To address it, a distributed Q-values approach is proposed when the resources are distributed among agents a priori, but the actions made by an agent may influence the reward obtained by at least another agent. This distributed Q-values approach allows to coordinate agents' reward and thus permits to reduce the set of states and actions to consider. On the other hand, when the resources are available to all agents, no distributed Q-values is possible and tight lower and upper bounds are proposed for existing heuristic search algorithms. Our experimental results demonstrate the efficiency of our distributed Q-values in terms of planning time as well as our tight bounds in terms of fast convergence and reduction of backups.

1987 ◽  
Vol 19 (4) ◽  
pp. 955-973 ◽  
Author(s):  
K. D. Glazebrook ◽  
N. A. Fay

Standard models in stochastic resource allocation concern the economic processing of all jobs in some set J. We consider a set up in which tasks in various subsets of J are deemed to be alternative to one another, in that only one member of such a subset of alternative tasks will be completed during the evolution of the process. Existing stochastic scheduling methodology for single-machine problems is developed and extended to this novel class of models. A major area of application is in research planning.


1994 ◽  
Vol 1 (30) ◽  
Author(s):  
Thore Husfeldt

We give an algorithm for the Dynamic Transitive Closure Problem for planar directed acyclic graphs with one source and one sink. The graph can be updated in logarithmic time under arbitrary edge insertions and deletions that preserve the embedding. Queries of the form `is there a directed path from u to v ?' for arbitrary vertices u and v can be answered in logarithmic time. The size of the data structure and the initialisation time are linear in the number of edges.<br /> <br />The result enlarges the class of graphs for which a logarithmic (or even polylogarithmic) time dynamic transitive closure algorithm exists. Previously, the only algorithms within the stated resource bounds put restrictions on the topology of the graph or on the delete operation. To obtain our result, we use a new characterisation of the transitive closure in plane graphs with one source and one sink and introduce new techniques to exploit this characterisation.<br /> <br />We also give a lower bound of Omega(log n/log log n) on the amortised complexity of the problem in the cell probe model with logarithmic word size. This is the first dynamic directed graph problem with almost matching lower and upper bounds.


2020 ◽  
Vol 34 (03) ◽  
pp. 2327-2334
Author(s):  
Vidal Alcázar ◽  
Pat Riddle ◽  
Mike Barley

In the past few years, new very successful bidirectional heuristic search algorithms have been proposed. Their key novelty is a lower bound on the cost of a solution that includes information from the g values in both directions. Kaindl and Kainz (1997) proposed measuring how inaccurate a heuristic is while expanding nodes in the opposite direction, and using this information to raise the f value of the evaluated nodes. However, this comes with a set of disadvantages and remains yet to be exploited to its full potential. Additionally, Sadhukhan (2013) presented BAE∗, a bidirectional best-first search algorithm based on the accumulated heuristic inaccuracy along a path. However, no complete comparison in regards to other bidirectional algorithms has yet been done, neither theoretical nor empirical. In this paper we define individual bounds within the lower-bound framework and show how both Kaindl and Kainz's and Sadhukhan's methods can be generalized thus creating new bounds. This overcomes previous shortcomings and allows newer algorithms to benefit from these techniques as well. Experimental results show a substantial improvement, up to an order of magnitude in the number of necessarily-expanded nodes compared to state-of-the-art near-optimal algorithms in common benchmarks.


2019 ◽  
Vol 34 (21) ◽  
pp. 1950169
Author(s):  
Aihan Yin ◽  
Kemeng He ◽  
Ping Fan

Among many classic heuristic search algorithms, the Grover quantum search algorithm (QSA) can play a role of secondary acceleration. Based on the properties of the two-qubit Grover QSA, a quantum dialogue (QD) protocol is proposed. In addition, our protocol also utilizes the unitary operations and single-particle measurements. The transmitted quantum state (except for the decoy state used for detection) can transmit two-bits of security information simultaneously. Theoretical analysis shows that the proposed protocol has high security.


2020 ◽  
Vol 34 (06) ◽  
pp. 9827-9834
Author(s):  
Maximilian Fickert ◽  
Tianyi Gu ◽  
Leonhard Staut ◽  
Wheeler Ruml ◽  
Joerg Hoffmann ◽  
...  

Suboptimal heuristic search algorithms can benefit from reasoning about heuristic error, especially in a real-time setting where there is not enough time to search all the way to a goal. However, current reasoning methods implicitly or explicitly incorporate assumptions about the cost-to-go function. We consider a recent real-time search algorithm, called Nancy, that manipulates explicit beliefs about the cost-to-go. The original presentation of Nancy assumed that these beliefs are Gaussian, with parameters following a certain form. In this paper, we explore how to replace these assumptions with actual data. We develop a data-driven variant of Nancy, DDNancy, that bases its beliefs on heuristic performance statistics from the same domain. We extend Nancy and DDNancy with the notion of persistence and prove their completeness. Experimental results show that DDNancy can perform well in domains in which the original assumption-based Nancy performs poorly.


1987 ◽  
Vol 19 (04) ◽  
pp. 955-973 ◽  
Author(s):  
K. D. Glazebrook ◽  
N. A. Fay

Standard models in stochastic resource allocation concern the economic processing of all jobs in some set J. We consider a set up in which tasks in various subsets of J are deemed to be alternative to one another, in that only one member of such a subset of alternative tasks will be completed during the evolution of the process. Existing stochastic scheduling methodology for single-machine problems is developed and extended to this novel class of models. A major area of application is in research planning.


2019 ◽  
Vol 172 ◽  
pp. 264-293 ◽  
Author(s):  
Luis Emiliano Sánchez ◽  
Jorge Andrés Diaz-Pace ◽  
Alejandro Zunino

Sign in / Sign up

Export Citation Format

Share Document