A two dimensional lattice of knots by C2m-moves

Author(s):  
SUMIKO HORIUCHI ◽  
YOSHIYUKI OHYAMA

AbstractWe consider a local move on a knot diagram, where we denote the local move by λ. If two knots K1 and K2 are transformed into each other by a finite sequence of λ-moves, the λ-distance between K1 and K2 is the minimum number of times of λ-moves needed to transform K1 into K2. A λ-distance satisfies the axioms of distance. A two dimensional lattice of knots by λ-moves is the two dimensional lattice graph which satisfies the following: the vertex set consists of oriented knots and for any two vertices K1 and K2, the distance on the graph from K1 to K2 coincides with the λ-distance between K1 and K2, where the distance on the graph means the number of edges of the shortest path which connects the two knots. Local moves called Cn-moves are closely related to Vassiliev invariants. In this paper, we show that for any given knot K, there is a two dimensional lattice of knots by C2m-moves with the vertex K.

2017 ◽  
Vol 26 (13) ◽  
pp. 1750090
Author(s):  
Sumiko Horiuchi ◽  
Yoshiyuki Ohyama

We consider a local move, denoted by [Formula: see text], on knot diagrams or virtual knot diagrams.If two (virtual) knots [Formula: see text] and [Formula: see text] are transformed into each other by a finite sequence of [Formula: see text] moves, the [Formula: see text] distance between [Formula: see text] and [Formula: see text] is the minimum number of times of [Formula: see text] moves needed to transform [Formula: see text] into [Formula: see text]. By [Formula: see text], we denote the set of all (virtual) knots which can be transformed into a (virtual) knot [Formula: see text] by [Formula: see text] moves. A geodesic graph for [Formula: see text] is the graph which satisfies the following: The vertex set consists of (virtual) knots in [Formula: see text] and for any two vertices [Formula: see text] and [Formula: see text], the distance on the graph from [Formula: see text] to [Formula: see text] coincides with the [Formula: see text] distance between [Formula: see text] and [Formula: see text]. When we consider virtual knots and a crossing change as a local move [Formula: see text], we show that the [Formula: see text]-dimensional lattice graph for any given natural number [Formula: see text] and any tree are geodesic graphs for [Formula: see text].


1991 ◽  
Vol 06 (39) ◽  
pp. 3591-3600 ◽  
Author(s):  
HIROSI OOGURI ◽  
NAOKI SASAKURA

It is shown that, in the three-dimensional lattice gravity defined by Ponzano and Regge, the space of physical states is isomorphic to the space of gauge-invariant functions on the moduli space of flat SU(2) connections over a two-dimensional surface, which gives physical states in the ISO(3) Chern–Simons gauge theory. To prove this, we employ the q-analogue of this model defined by Turaev and Viro as a regularization to sum over states. A recent work by Turaev suggests that the q-analogue model itself may be related to an Euclidean gravity with a cosmological constant proportional to 1/k2, where q=e2πi/(k+2).


2007 ◽  
Vol 21 (02n03) ◽  
pp. 139-154 ◽  
Author(s):  
J. H. ASAD

A first-order differential equation of Green's function, at the origin G(0), for the one-dimensional lattice is derived by simple recurrence relation. Green's function at site (m) is then calculated in terms of G(0). A simple recurrence relation connecting the lattice Green's function at the site (m, n) and the first derivative of the lattice Green's function at the site (m ± 1, n) is presented for the two-dimensional lattice, a differential equation of second order in G(0, 0) is obtained. By making use of the latter recurrence relation, lattice Green's function at an arbitrary site is obtained in closed form. Finally, the phase shift and scattering cross-section are evaluated analytically and numerically for one- and two-impurities.


1992 ◽  
Vol 68 (13) ◽  
pp. 2027-2030 ◽  
Author(s):  
Jean-Christophe Toussaint ◽  
Jean-Marc Debierre ◽  
Loïc Turban

Sign in / Sign up

Export Citation Format

Share Document