scholarly journals Bisected vertex leveling of plane graphs: Braid index, arc index and delta diagrams

2018 ◽  
Vol 27 (08) ◽  
pp. 1850044
Author(s):  
Sungjong No ◽  
Seungsang Oh ◽  
Hyungkee Yoo

In this paper, we introduce a bisected vertex leveling of a plane graph. Using this planar embedding, we present elementary proofs of the well-known upper bounds in terms of the minimal crossing number on braid index [Formula: see text] and arc index [Formula: see text] for any knot or non-split link [Formula: see text], which are [Formula: see text] and [Formula: see text]. We also find a quadratic upper bound of the minimal crossing number of delta diagrams of [Formula: see text].

2017 ◽  
Vol 26 (14) ◽  
pp. 1750100 ◽  
Author(s):  
Minjung Lee ◽  
Sungjong No ◽  
Seungsang Oh

For a nontrivial knot [Formula: see text], Negami found an upper bound on the stick number [Formula: see text] in terms of its crossing number [Formula: see text] which is [Formula: see text]. Later, Huh and Oh utilized the arc index [Formula: see text] to present a more precise upper bound [Formula: see text]. Furthermore, Kim, No and Oh found an upper bound on the equilateral stick number [Formula: see text] as follows; [Formula: see text]. As a sequel to this research program, we similarly define the stick number [Formula: see text] and the equilateral stick number [Formula: see text] of a spatial graph [Formula: see text], and present their upper bounds as follows; [Formula: see text] [Formula: see text] where [Formula: see text] and [Formula: see text] are the number of edges and vertices of [Formula: see text], respectively, [Formula: see text] is the number of bouquet cut-components, and [Formula: see text] is the number of non-splittable components.


2019 ◽  
Vol 28 (14) ◽  
pp. 1950085
Author(s):  
Yuanan Diao ◽  
Claus Ernst ◽  
Attila Por ◽  
Uta Ziegler

For a knot or link [Formula: see text], let [Formula: see text] be the ropelength of [Formula: see text] and [Formula: see text] be the crossing number of [Formula: see text]. In this paper, we show that there exists a constant [Formula: see text] such that [Formula: see text] for any [Formula: see text], i.e. the upper bound of the ropelength of any knot is almost linear in terms of its minimum crossing number. This result is a significant improvement over the best known upper bound established previously, which is of the form [Formula: see text]. The proof is based on a divide-and-conquer approach on 4-regular plane graphs: a 4-regular plane graph of [Formula: see text] is first repeatedly subdivided into many small subgraphs and then reconstructed from these small subgraphs on the cubic lattice with its topology preserved with a total length of the order [Formula: see text]. The result then follows since a knot can be recovered from a graph that is topologically equivalent to a regular projection of it (which is a 4-regular plane graph).


10.37236/3025 ◽  
2014 ◽  
Vol 21 (1) ◽  
Author(s):  
Vida Dujmović ◽  
Pat Morin ◽  
Adam Sheffer

We prove tight crossing number inequalities for geometric graphs whose vertex sets are taken from a $d$-dimensional grid of volume $N$ and give applications of these inequalities to counting the number of crossing-free geometric graphs that can be drawn on such grids.In particular, we show that any geometric graph with $m\geq 8N$ edges and with vertices on a 3D integer grid of volume $N$, has $\Omega((m^2/N)\log(m/N))$ crossings. In $d$-dimensions, with $d\ge 4$, this bound becomes $\Omega(m^2/N)$. We provide matching upper bounds for all $d$. Finally, for $d\ge 4$ the upper bound implies that the maximum number of crossing-free geometric graphs with vertices on some $d$-dimensional grid of volume $N$ is $N^{\Theta(N)}$. In 3 dimensions it remains open to improve the trivial bounds, namely, the $2^{\Omega(N)}$ lower bound and the $N^{O(N)}$ upper bound.


2013 ◽  
Vol 22 (6) ◽  
pp. 935-954 ◽  
Author(s):  
MICHA SHARIR ◽  
ADAM SHEFFER

We study cross-graph charging schemes for graphs drawn in the plane. These are charging schemes where charge is moved across vertices of different graphs. Such methods have recently been used to obtain various properties of triangulations that are embedded in a fixed set of points in the plane. We generalize this method to obtain results for various other types of graphs that are embedded in the plane. Specifically, we obtain a new bound ofO*(187.53N) (where theO*(⋅) notation hides polynomial factors) for the maximum number of crossing-free straight-edge graphs that can be embedded in any specific set ofNpoints in the plane (improving upon the previous best upper bound 207.85Nin Hoffmann, Schulz, Sharir, Sheffer, Tóth and Welzl [14]). We also derive upper bounds for numbers of several other types of plane graphs (such as connected and bi-connected plane graphs), and obtain various bounds on the expected vertex-degrees in graphs that are uniformly chosen from the set of all crossing-free straight-edge graphs that can be embedded in a specific point set.We then apply the cross-graph charging-scheme method to graphs that allow certain types of crossings. Specifically, we consider graphs with no set ofkpairwise crossing edges (more commonly known ask-quasi-planar graphs). Fork=3 andk=4, we prove that, for any setSofNpoints in the plane, the number of graphs that have a straight-edgek-quasi-planar embedding overSis only exponential inN.


2011 ◽  
Vol 20 (05) ◽  
pp. 741-747 ◽  
Author(s):  
YOUNGSIK HUH ◽  
SEUNGSANG OH

In 1991, Negami found an upper bound on the stick number s(K) of a nontrivial knot K in terms of crossing number c(K) which is s(K) ≤ 2c(K). In this paper we give a new upper bound in terms of arc index, and improve Negami's upper bound to [Formula: see text]. Moreover if K is a nonalternating prime knot, then [Formula: see text].


2014 ◽  
Vol 23 (07) ◽  
pp. 1460008 ◽  
Author(s):  
Hyoungjun Kim ◽  
Sungjong No ◽  
Seungsang Oh

An equilateral stick number s=(K) of a knot K is defined to be the minimal number of sticks required to construct a polygonal knot of K which consists of equal length sticks. Rawdon and Scharein [Upper bounds for equilateral stick numbers, in Physical Knots: Knotting, Linking, and Folding Geometric Objects in ℝ3, Contemporary Mathematics, Vol. 304 (American Mathematical Society, Providence, RI, 2002), pp. 55–76] found upper bounds for the equilateral stick numbers of all prime knots through 10 crossings by using algorithms in the software KnotPlot. In this paper, we find an upper bound on the equilateral stick number of a non-trivial knot K in terms of the minimal crossing number c(K) which is s=(K) ≤ 2c(K) + 2. Moreover if K is a non-alternating prime knot, then s=(K) ≤ 2c(K) - 2. Furthermore we find another upper bound on the equilateral stick number for composite knots which is s=(K1♯K2) ≤ 2c(K1) + 2c(K2).


10.37236/4783 ◽  
2015 ◽  
Vol 22 (3) ◽  
Author(s):  
V. A. Aksenov ◽  
O. V. Borodin ◽  
A. O. Ivanova

We prove precise upper bounds for the minimum weight of a path on three vertices in several natural classes of plane graphs with minimum degree 2 and girth $g$ from 5 to 7. In particular, we disprove a conjecture by S. Jendrol' and M. Maceková concerning the case $g=5$ and prove the tightness of their upper bound for $g=5$ when no vertex is adjacent to more than one vertex of degree 2. For $g\ge8$, the upper bound recently found by Jendrol' and Maceková is tight.


2021 ◽  
Vol 2021 ◽  
pp. 1-6
Author(s):  
Adthasit Sinna ◽  
Witthawas Phanthawimol ◽  
Sirirat Singhun

The circumference of a graph G is the length of a longest cycle in G , denoted by cir G . For any even number n , let c n  = min { cir G | G is a 3-connected cubic triangle-free plane graph with n vertices}. In this paper, we show that an upper bound of c n is n + 1 − 3 ⌊ n / 136 ⌋ for n ≥ 136 .


2010 ◽  
Vol 19 (12) ◽  
pp. 1655-1672 ◽  
Author(s):  
GYO TAEK JIN ◽  
WANG KEUN PARK

Every knot can be embedded in the union of finitely many half planes with a common boundary line in such a way that the portion of the knot in each half plane is a properly embedded arc. The minimal number of such half planes is called the arc index of the knot. We have identified all prime knots with arc index up to 11. We also proved that the crossing number is an upperbound of arc index for non-alternating knots. As a result the arc index is determined for prime knots up to twelve crossings.


Author(s):  
Hwa Jeong Lee ◽  
Sungjong No ◽  
Seungsang Oh

Negami found an upper bound on the stick number [Formula: see text] of a nontrivial knot [Formula: see text] in terms of the minimal crossing number [Formula: see text]: [Formula: see text]. Huh and Oh found an improved upper bound: [Formula: see text]. Huh, No and Oh proved that [Formula: see text] for a [Formula: see text]-bridge knot or link [Formula: see text] with at least six crossings. As a sequel to this study, we present an upper bound on the stick number of Montesinos knots and links. Let [Formula: see text] be a knot or link which admits a reduced Montesinos diagram with [Formula: see text] crossings. If each rational tangle in the diagram has five or more index of the related Conway notation, then [Formula: see text]. Furthermore, if [Formula: see text] is alternating, then we can additionally reduce the upper bound by [Formula: see text].


Sign in / Sign up

Export Citation Format

Share Document