scholarly journals The ropelengths of knots are almost linear in terms of their crossing numbers

2019 ◽  
Vol 28 (14) ◽  
pp. 1950085
Author(s):  
Yuanan Diao ◽  
Claus Ernst ◽  
Attila Por ◽  
Uta Ziegler

For a knot or link [Formula: see text], let [Formula: see text] be the ropelength of [Formula: see text] and [Formula: see text] be the crossing number of [Formula: see text]. In this paper, we show that there exists a constant [Formula: see text] such that [Formula: see text] for any [Formula: see text], i.e. the upper bound of the ropelength of any knot is almost linear in terms of its minimum crossing number. This result is a significant improvement over the best known upper bound established previously, which is of the form [Formula: see text]. The proof is based on a divide-and-conquer approach on 4-regular plane graphs: a 4-regular plane graph of [Formula: see text] is first repeatedly subdivided into many small subgraphs and then reconstructed from these small subgraphs on the cubic lattice with its topology preserved with a total length of the order [Formula: see text]. The result then follows since a knot can be recovered from a graph that is topologically equivalent to a regular projection of it (which is a 4-regular plane graph).

2018 ◽  
Vol 27 (08) ◽  
pp. 1850044
Author(s):  
Sungjong No ◽  
Seungsang Oh ◽  
Hyungkee Yoo

In this paper, we introduce a bisected vertex leveling of a plane graph. Using this planar embedding, we present elementary proofs of the well-known upper bounds in terms of the minimal crossing number on braid index [Formula: see text] and arc index [Formula: see text] for any knot or non-split link [Formula: see text], which are [Formula: see text] and [Formula: see text]. We also find a quadratic upper bound of the minimal crossing number of delta diagrams of [Formula: see text].


2019 ◽  
Vol 100 (1) ◽  
pp. 5-12
Author(s):  
MICHAEL HAYTHORPE ◽  
ALEX NEWCOMBE

The exact crossing number is only known for a small number of families of graphs. Many of the families for which crossing numbers have been determined correspond to cartesian products of two graphs. Here, the cartesian product of the sunlet graph, denoted ${\mathcal{S}}_{n}$, and the star graph, denoted $K_{1,m}$, is considered for the first time. It is proved that the crossing number of ${\mathcal{S}}_{n}\Box K_{1,2}$ is $n$, and the crossing number of ${\mathcal{S}}_{n}\Box K_{1,3}$ is $3n$. An upper bound for the crossing number of ${\mathcal{S}}_{n}\Box K_{1,m}$ is also given.


2018 ◽  
Vol 27 (08) ◽  
pp. 1850048
Author(s):  
Hyungkee Yoo ◽  
Chaeryn Lee ◽  
Seungsang Oh

The lattice stick number of knots is defined to be the minimal number of straight sticks in the cubic lattice required to construct a lattice stick presentation of the knot. We similarly define the lattice stick number [Formula: see text] of spatial graphs [Formula: see text] with vertices of degree at most six (necessary for embedding into the cubic lattice), and present an upper bound in terms of the crossing number [Formula: see text] [Formula: see text] where [Formula: see text] has [Formula: see text] edges, [Formula: see text] vertices, [Formula: see text] cut-components, [Formula: see text] bouquet cut-components, and [Formula: see text] knot components.


2021 ◽  
Vol 2021 ◽  
pp. 1-6
Author(s):  
Adthasit Sinna ◽  
Witthawas Phanthawimol ◽  
Sirirat Singhun

The circumference of a graph G is the length of a longest cycle in G , denoted by cir G . For any even number n , let c n  = min { cir G | G is a 3-connected cubic triangle-free plane graph with n vertices}. In this paper, we show that an upper bound of c n is n + 1 − 3 ⌊ n / 136 ⌋ for n ≥ 136 .


2013 ◽  
Vol 155 (1) ◽  
pp. 173-179 ◽  
Author(s):  
KYUNGPYO HONG ◽  
SUNGJONG NO ◽  
SEUNGSANG OH

AbstractThe lattice stick number sL(K) of a knot K is defined to be the minimal number of straight line segments required to construct a stick presentation of K in the cubic lattice. In this paper, we find an upper bound on the lattice stick number of a nontrivial knot K, except the trefoil knot, in terms of the minimal crossing number c(K) which is sL(K) ≤ 3c(K) + 2. Moreover if K is a non-alternating prime knot, then sL(K) ≤ 3c(K) − 4.


Author(s):  
Hwa Jeong Lee ◽  
Sungjong No ◽  
Seungsang Oh

Negami found an upper bound on the stick number [Formula: see text] of a nontrivial knot [Formula: see text] in terms of the minimal crossing number [Formula: see text]: [Formula: see text]. Huh and Oh found an improved upper bound: [Formula: see text]. Huh, No and Oh proved that [Formula: see text] for a [Formula: see text]-bridge knot or link [Formula: see text] with at least six crossings. As a sequel to this study, we present an upper bound on the stick number of Montesinos knots and links. Let [Formula: see text] be a knot or link which admits a reduced Montesinos diagram with [Formula: see text] crossings. If each rational tangle in the diagram has five or more index of the related Conway notation, then [Formula: see text]. Furthermore, if [Formula: see text] is alternating, then we can additionally reduce the upper bound by [Formula: see text].


2019 ◽  
Vol 35 (2) ◽  
pp. 137-146
Author(s):  
STEFAN BEREZNY ◽  
MICHAL STAS ◽  
◽  

The main purpose of this article is broaden known results concerning crossing numbers for join of graphs of order six. We give the crossing number of the join product G + Dn, where the graph G consists of one 5-cycle and of one isolated vertex, and Dn consists on n isolated vertices. The proof is done with the help of software that generates all cyclic permutations for a given number k, and creates a new graph COG for calculating the distances between all vertices of the graph. Finally, by adding some edges to the graph G, we are able to obtain the crossing numbers of the join product with the discrete graph Dn and with the path Pn on n vertices for other two graphs.


2012 ◽  
Vol 21 (14) ◽  
pp. 1250129 ◽  
Author(s):  
SHUYA LIU ◽  
HEPING ZHANG

In this paper, we associate a plane graph G with an oriented link by replacing each vertex of G with a special oriented n-tangle diagram. It is shown that such an oriented link has the minimum genus over all orientations of its unoriented version if its associated plane graph G is 2-connected. As a result, the genera of a large family of unoriented links are determined by an explicit formula in terms of their component numbers and the degree sum of their associated plane graphs.


2021 ◽  
Vol 28 (4) ◽  
Author(s):  
Marcus Schaefer

We show that a plane graph can be embedded with its vertices at arbitrarily assigned locations in the plane and at most $6n-1$ bends per edge. This improves and simplifies a classic result by Pach and Wenger. The proof extends to orthogonal drawings.


2005 ◽  
Vol 14 (06) ◽  
pp. 713-733 ◽  
Author(s):  
CYNTHIA L. McCABE
Keyword(s):  

A method is given for economically constructing any algebraic knot or link K. This construction, which involves tree diagrams, gives a new upper bound for the edge number of K that is proven to be at most twice the crossing number of K. Furthermore, it realizes a minimal-crossing projection.


Sign in / Sign up

Export Citation Format

Share Document