scholarly journals Virtual tangles and fiber functors

2019 ◽  
Vol 28 (07) ◽  
pp. 1950044
Author(s):  
Adrien Brochier

We define a category [Formula: see text] of tangles diagrams drawn on surfaces with boundaries. On the one hand, we show that there is a natural functor from the category of virtual tangles to [Formula: see text] which induces an equivalence of categories. On the other hand, we show that [Formula: see text] is universal among ribbon categories equipped with a strong monoidal functor to a symmetric monoidal category. This is a generalization of the Shum–Reshetikhin–Turaev theorem characterizing the category of ordinary tangles as the free ribbon category. This gives a straightforward proof that all quantum invariants of links extend to framed oriented virtual links. This also provides a clear explanation of the relation between virtual tangles and Etingof–Kazhdan formalism suggested by Bar-Natan. We prove a similar statement for virtual braids, and discuss the relation between our category and knotted trivalent graphs.

2003 ◽  
Vol 55 (4) ◽  
pp. 766-821 ◽  
Author(s):  
Thomas Kerler

AbstractWe develop an explicit skein-theoretical algorithm to compute the Alexander polynomial of a 3-manifold from a surgery presentation employing the methods used in the construction of quantum invariants of 3-manifolds. As a prerequisite we establish and prove a rather unexpected equivalence between the topological quantum field theory constructed by Frohman and Nicas using the homology ofU(1)-representation varieties on the one side and the combinatorially constructed Hennings TQFT based on the quasitriangular Hopf algebra= ℤ/2 n ⋊ Λ* ℝ2on the other side. We find that both TQFT's are SL(2; ℝ)-equivariant functors and, as such, are isomorphic. The SL(2; ℝ)-action in the Hennings construction comes from the natural action onand in the case of the Frohman–Nicas theory from the Hard–Lefschetz decomposition of theU(1)-moduli spaces given that they are naturally Kähler. The irreducible components of this TQFT, corresponding to simple representations of SL(2; ℤ) and Sp(2g; ℤ), thus yield a large family of homological TQFT's by taking sums and products. We give several examples of TQFT's and invariants that appear to fit into this family, such as Milnor and Reidemeister Torsion, Seiberg–Witten theories, Casson type theories for homology circlesà laDonaldson, higher rank gauge theories following Frohman and Nicas, and the ℤ=pℤ reductions of Reshetikhin.Turaev theories over the cyclotomic integers ℤ[ζp]. We also conjecture that the Hennings TQFT for quantum-sl2is the product of the Reshetikhin–Turaev TQFT and such a homological TQFT.


2013 ◽  
Vol 22 (01) ◽  
pp. 1250137 ◽  
Author(s):  
DROR BAR-NATAN ◽  
ZSUZSANNA DANCSO

It had been known since old times (works of Murakami–Ohtsuki, Cheptea–Le and the second author) that there exists a universal finite type invariant ("an expansion") Z old for knotted trivalent graphs (KTGs), and that it can be chosen to intertwine between some of the standard operations on KTGs and their chord-diagrammatic counterparts (so that relative to those operations, it is "homomorphic"). Yet perhaps the most important operation on KTGs is the "edge unzip" operation, and while the behavior of Z old under edge unzip is well understood, it is not plainly homomorphic as some "correction factors" appear. In this paper we present two equivalent ways of modifying Z old into a new expansion Z, defined on "dotted knotted trivalent graphs" (dKTGs), which is homomorphic with respect to a large set of operations. The first is to replace "edge unzips" by "tree connected sums", and the second involves somewhat restricting the circumstances under which edge unzips are allowed. As we shall explain, the newly defined class dKTG of KTGs retains all the good qualities that KTGs have — it remains firmly connected with the Drinfel'd theory of associators and it is sufficiently rich to serve as a foundation for an "algebraic knot theory". As a further application, we present a simple proof of the good behavior of the LMO invariant under the Kirby II (band-slide) move, first proven by Le, Murakami, Murakami and Ohtsuki.


2015 ◽  
Vol 144 (3) ◽  
pp. 1371-1382
Author(s):  
J. Scott Carter ◽  
Seung Yeop Yang

Author(s):  
JOACHIM KOCK

AbstractWe explore an alternative definition of unit in a monoidal category originally due to Saavedra: a Saavedra unit is a cancellable idempotent (in a 1-categorical sense). This notion is more economical than the usual notion in terms of left-right constraints, and is motivated by higher category theory. To start, we describe the semi-monoidal category of all possible unit structures on a given semi-monoidal category and observe that it is contractible (if non-empty). Then we prove that the two notions of units are equivalent in a strong functorial sense. Next, it is shown that the unit compatibility condition for a (strong) monoidal functor is precisely the condition for the functor to lift to the categories of units, and it is explained how the notion of Saavedra unit naturally leads to the equivalent non-algebraic notion of fair monoidal category, where the contractible multitude of units is considered as a whole instead of choosing one unit. To finish, the lax version of the unit comparison is considered. The paper is self-contained. All arguments are elementary, some of them of a certain beauty.


Author(s):  
Pavel Etingof ◽  
Victor Ostrik

AbstractWe develop a theory of Frobenius functors for symmetric tensor categories (STC) {\mathcal{C}} over a field {\boldsymbol{k}} of characteristic p, and give its applications to classification of such categories. Namely, we define a twisted-linear symmetric monoidal functor {F:\mathcal{C}\to\mathcal{C}\boxtimes{\rm Ver}_{p}}, where {{\rm Ver}_{p}} is the Verlinde category (the semisimplification of {\mathop{\mathrm{Rep}}\nolimits_{\mathbf{k}}(\mathbb{Z}/p)}); a similar construction of the underlying additive functor appeared independently in [K. Coulembier, Tannakian categories in positive characteristic, preprint 2019]. This generalizes the usual Frobenius twist functor in modular representation theory and also the one defined in [V. Ostrik, On symmetric fusion categories in positive characteristic, Selecta Math. (N.S.) 26 2020, 3, Paper No. 36], where it is used to show that if {\mathcal{C}} is finite and semisimple, then it admits a fiber functor to {{\rm Ver}_{p}}. The main new feature is that when {\mathcal{C}} is not semisimple, F need not be left or right exact, and in fact this lack of exactness is the main obstruction to the existence of a fiber functor {\mathcal{C}\to{\rm Ver}_{p}}. We show, however, that there is a 6-periodic long exact sequence which is a replacement for the exactness of F, and use it to show that for categories with finitely many simple objects F does not increase the Frobenius–Perron dimension. We also define the notion of a Frobenius exact category, which is a STC on which F is exact, and define the canonical maximal Frobenius exact subcategory {\mathcal{C}_{\rm ex}} inside any STC {\mathcal{C}} with finitely many simple objects. Namely, this is the subcategory of all objects whose Frobenius–Perron dimension is preserved by F. One of our main results is that a finite STC is Frobenius exact if and only if it admits a (necessarily unique) fiber functor to {{\rm Ver}_{p}}. This is the strongest currently available characteristic p version of Deligne’s theorem (stating that a STC of moderate growth in characteristic zero is the representation category of a supergroup). We also show that a sufficiently large power of F lands in {\mathcal{C}_{\rm ex}}. Also, in characteristic 2 we introduce a slightly weaker notion of an almost Frobenius exact category (namely, one having a fiber functor into the category of representations of the triangular Hopf algebra {\boldsymbol{k}[d]/d^{2}} with d primitive and R-matrix {R=1\otimes 1+d\otimes d}), and show that a STC with Chevalley property is (almost) Frobenius exact. Finally, as a by-product, we resolve Question 2.15 of [P. Etingof and S. Gelaki, Exact sequences of tensor categories with respect to a module category, Adv. Math. 308 2017, 1187–1208].


2018 ◽  
pp. 95-124 ◽  
Author(s):  
Young-min Joo

Since there are few relics excavated, research on pine oil kilns in Yeongnam Province has been mostly focused on figuring out the historical meaning of them relying on literatures with no precise analysis on the remains. Therefore, it has failed to give clear explanation about the fact that the firing room of pine oil kilns was rebuilt twice with different materials. Based on the awareness of the problem, this author conducted analysis on the relics of pine oil kilns that have been excavated so far. According to the analysis results, at first, the pine oil kiln was similar to the one producing oil made of pine resin collected. Furthermore, this author found the pine oil kiln first devised around 1938 and also two photos showing how the pine oil kiln was working. Along with that, this author suggests the valid possibility of colony Chosun’s traditional masters mobilized to apply their technique and operate the kilns in the background of the pine oil kilns completely equipped to the extent of performing their functions properly after several times of improvements made although they had exhibited many problems before. Next, this author analyzed the attributes related to the standardization of pine oil kilns and learned that building pine oil kilns was led by the colonial government systematically based on thorough planning as part of securing resources they needed. Also, to induce the people to participate in it voluntarily, at first, they encouraged it as a side job for farm families; however, in the end, the colonial government enforced the monopoly system for pine oil to control it. Accordingly, pine oil kilns were built mostly in the foot of a mountain near the village where there were many people residing. In fact, all the colonized people including children got mobilized systematically to collect the byproducts of pines.


2017 ◽  
Vol 2019 (11) ◽  
pp. 3527-3579 ◽  
Author(s):  
Scott Morrison ◽  
David Penneys

Abstract We introduce the notion of a monoidal category enriched in a braided monoidal category $\mathcal{V}$. We set up the basic theory, and prove a classification result in terms of braided oplax monoidal functors to the Drinfeld centre of some monoidal category $\mathcal{T}$. Even the basic theory is interesting; it shares many characteristics with the theory of monoidal categories enriched in a symmetric monoidal category, but lacks some features. Of particular note, there is no cartesian product of braided-enriched categories, and the natural transformations do not form a 2-category, but rather satisfy a braided interchange relation. Strikingly, our classification is slightly more general than what one might have anticipated in terms of strong monoidal functors $\mathcal{V}\to Z(\mathcal{T})$. We would like to understand this further; in a future article, we show that the functor is strong if and only if the enriched category is ‘complete’ in a certain sense. Nevertheless it remains to understand what non-complete enriched categories may look like. One should think of our construction as a generalization of de-equivariantization, which takes a strong monoidal functor ${\mathsf {Rep}}(G) \to Z(\mathcal{T})$ for some finite group $G$ and a monoidal category $\mathcal{T}$, and produces a new monoidal category $\mathcal{T} _{{/\hspace{-2px}/}G}$. In our setting, given any braided oplax monoidal functor $\mathcal{V} \to Z(\mathcal{T})$, for any braided $\mathcal{V}$, we produce $\mathcal{T} _{{/\hspace{-2px}/}\mathcal{V}}$: this is not usually an ‘honest’ monoidal category, but is instead $\mathcal{V}$-enriched. If $\mathcal{V}$ has a braided lax monoidal functor to ${\mathsf {Vec}}$, we can use this to reduce the enrichment to ${\mathsf {Vec}}$, and this recovers de-equivariantization as a special case. This is the published version of arXiv:1701.00567.


2018 ◽  
Vol 27 (01) ◽  
pp. 1850002 ◽  
Author(s):  
José Gregorio Rodríguez-Nieto

In this paper, we use theory of embedded graphs on oriented and compact [Formula: see text]-surfaces to construct minimal realizations of signed Gauss paragraphs. We prove that the genus of the ambient surface of these minimal realizations can be seen as a function of the maximum number of Carter’s circles. For the case of signed Gauss words, we use a generating set of [Formula: see text], given in [G. Cairns and D. Elton, The Planarity problem for signed Gauss world, J. Knots Theor. Ramif. 2(4) (1993) 359–367], and the intersection pairing of immersed [Formula: see text]-normal curves to present a short solution of the signed Gauss word problem. We relate this solution with the one given by Cairns and Elton. Moreover, we define the join operation on signed Gauss paragraphs to produce signed Gauss words such that both can be realized on the same minimal genus [Formula: see text]-surface. We connect the characterization of signed Gauss paragraph with the recognition virtual links problem. Also we present a combinatorial algorithm to compute, in an easier way, skew-symmetric graded matrices [V. Turaev, Cobordism of knots on surfaces, J. Topol. 1(2) (2008) 285–305] for virtual knots through the concept of triplets [M. Toro and J. Rodríguez, Triplets associated to virtual knot diagrams, Rev. Integración (2011)]. Therefore, we can prove that the Kishino’s knot is not classical, moreover, we prove that the virtual knots of the family [Formula: see text] given in [H. A. Dye, Virtual knots undetected by [Formula: see text] and [Formula: see text]-strand bracket polynomials, Topol. Appl. 153 (2005) 141–160] are not classical knots.


Sign in / Sign up

Export Citation Format

Share Document