A NOTE ON ROTANT LINKS

1999 ◽  
Vol 08 (03) ◽  
pp. 397-403 ◽  
Author(s):  
PAWEŁ TRACZYK
Keyword(s):  

We prove that the skein polynomial and the Jones polynomial of oriented links are not changed be the rotation operation of Anstee, Przytycki and Rolfsen [1], provided the rotor part of the diagram is of a certain special type.

Author(s):  
Heather M Russell ◽  
Julianna Tymoczko

Abstract Webs are planar graphs with boundary that describe morphisms in a diagrammatic representation category for $\mathfrak{sl}_k$. They are studied extensively by knot theorists because braiding maps provide a categorical way to express link diagrams in terms of webs, producing quantum invariants like the well-known Jones polynomial. One important question in representation theory is to identify the relationships between different bases; coefficients in the change-of-basis matrix often describe combinatorial, algebraic, or geometric quantities (e.g., Kazhdan–Lusztig polynomials). By ”flattening” the braiding maps, webs can also be viewed as the basis elements of a symmetric group representation. In this paper, we define two new combinatorial structures for webs: band diagrams and their one-dimensional projections, shadows, which measure depths of regions inside the web. As an application, we resolve an open conjecture that the change of basis between the so-called Specht basis and web basis of this symmetric group representation is unitriangular for $\mathfrak{sl}_3$-webs ([ 33] and [ 29].) We do this using band diagrams and shadows to construct a new partial order on webs that is a refinement of the usual partial order. In fact, we prove that for $\mathfrak{sl}_2$-webs, our new partial order coincides with the tableau partial order on webs studied by the authors and others [ 12, 17, 29, 33]. We also prove that though the new partial order for $\mathfrak{sl}_3$-webs is a refinement of the previously studied tableau order, the two partial orders do not agree for $\mathfrak{sl}_3$.


1988 ◽  
Vol 104 (1) ◽  
pp. 105-113
Author(s):  
Makoto Sakuma

The Jones polynomial VL(t) of a link L in S3 contains certain information on the homology of the 2-fold branched covering D(L) of S3 branched along L. The following formulae are proved by Jones[3] and Lickorish and Millett[6] respectively:


1991 ◽  
Vol 109 (1) ◽  
pp. 83-103 ◽  
Author(s):  
H. R. Morton ◽  
P. Strickland

AbstractResults of Kirillov and Reshetikhin on constructing invariants of framed links from the quantum group SU(2)q are adapted to give a simple formula relating the invariants for a satellite link to those of the companion and pattern links used in its construction. The special case of parallel links is treated first. It is shown as a consequence that any SU(2)q-invariant of a link L is a linear combination of Jones polynomials of parallels of L, where the combination is determined explicitly from the representation ring of SU(2). As a simple illustration Yamada's relation between the Jones polynomial of the 2-parallel of L and an evaluation of Kauffman's polynomial for sublinks of L is deduced.


2008 ◽  
Vol 17 (08) ◽  
pp. 925-937
Author(s):  
TOSHIFUMI TANAKA

We give formulas for the N-colored Jones polynomials of doubles of knots by using skein theory. As a corollary, we show that if the volume conjecture for untwisted positive (or negative) doubles of knots is true, then the colored Jones polynomial detects the unknot.


Author(s):  
Joseph H. Schmaus ◽  
Inderjit Chopra

The predictions of an upgraded UMARC comprehensive analysis are compared to experimental lift offset rotor results. The experiments cover a range of collective pitch angles (θ°) from 2° to 10°, advance ratios (μ) from 0.21 to 0.53, and lift offset from 0% to 20%. The experimental model rotors are from a system of coaxial hingeless rotors, with two blades each, and a first flap frequency of approximately 1.6/rev. The simulation is compared with isolated rotor performance and controls with lift offset, loads, and pitch link forces. Increasing efficiency with increasing lift offset, the impact of lift offset on different loads, and the dependence of pitch link loads on pitch bearing damping are identified in the experiment and correlated with the simulation.


2008 ◽  
Vol 98 (2) ◽  
pp. 384-399 ◽  
Author(s):  
Oliver T. Dasbach ◽  
David Futer ◽  
Efstratia Kalfagianni ◽  
Xiao-Song Lin ◽  
Neal W. Stoltzfus

2000 ◽  
Vol 101 (3) ◽  
pp. 359-426 ◽  
Author(s):  
Mikhail Khovanov
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document