scholarly journals ENTROPY AND AREA IN LOOP QUANTUM GRAVITY

2005 ◽  
Vol 14 (12) ◽  
pp. 2301-2305
Author(s):  
JOHN SWAIN

Black hole thermodynamics suggests that the maximum entropy that can be contained in a region of space is proportional to the area enclosing it rather than its volume. We argue that this follows naturally from loop quantum gravity and a result of Kolmogorov and Bardzin' on the the realizability of networks in three dimensions. This represents an alternative to other approaches in which some sort of correlation between field configurations helps limit the degrees of freedom within a region. It also provides an approach to thinking about black hole entropy in terms of states inside rather than on its surface. Intuitively, a spin network complicated enough to imbue a region with volume only lets that volume grow as quickly as the area bounding it.

2015 ◽  
Vol 24 (11) ◽  
pp. 1530028 ◽  
Author(s):  
Steven Carlip ◽  
Dah-Wei Chiou ◽  
Wei-Tou Ni ◽  
Richard Woodard

We present a bird's-eye survey on the development of fundamental ideas of quantum gravity, placing emphasis on perturbative approaches, string theory, loop quantum gravity (LQG) and black hole thermodynamics. The early ideas at the dawn of quantum gravity as well as the possible observations of quantum gravitational effects in the foreseeable future are also briefly discussed.


2010 ◽  
Vol 88 (3) ◽  
pp. 223-225
Author(s):  
J. Manuel García-Islas

We show that counting different configurations that give rise to black-hole entropy in loop quantum gravity is related to partitions in number theory.


2015 ◽  
Vol 24 (10) ◽  
pp. 1550074 ◽  
Author(s):  
L. Mullick ◽  
P. Bandyopadhyay

We have considered here the emergence of diffeomorphism symmetry in quantum gravity in the framework of the quantization of a fermion. It is pointed out that a closed loop having the holonomy associated with the SU(2) gauge group is realized from the rotation of the direction vector associated with the quantization of a fermion depicting spin degrees of freedom which appear as SU(2) gauge bundle. During the formation of a loop, a noncyclic path with open ends can be mapped onto a closed loop when the holonomy involves q-deformed gauge group SUq(2). This gives rise to q-deformed diffeomorphism and helps to realize diffeomorphism invariance in quantum gravity through a sequence of q-deformed diffeomorphism in the limit q = 1. We can consider adiabatic iteration such that the quasispin associated with the quantum group SUq(2) gradually evolves as the time dependent deformation parameter q changes and in the limit q = 1, we achieve the standard spin. This essentially depicts the evolution of spin network as the loop is being formed and links fermionic degrees of freedom with loop quantum gravity.


2007 ◽  
Vol 68 ◽  
pp. 012031 ◽  
Author(s):  
Alejandro Corichi ◽  
Jacobo Díaz-Polo ◽  
Enrique Fernández-Borja

Sign in / Sign up

Export Citation Format

Share Document