Dark energy and dark matter as due to zero point energy

2012 ◽  
Vol 79 (3) ◽  
pp. 327-334 ◽  
Author(s):  
BO LEHNERT

AbstractAn attempt is made to explain dark energy and dark matter of the expanding universe in terms of the zero point vacuum energy. This analysis is mainly limited to later stages of an observable nearly flat universe. It is based on a revised formulation of the spectral distribution of the zero point energy, for an ensemble in a defined statistical equilibrium having finite total energy density. The steady and dynamic states are studied for a spherical cloud of zero point energy photons. The ‘antigravitational’ force due to its pressure gradient then represents dark energy, and its gravitational force due to the energy density represents dark matter. Four fundamental results come out of the theory. First, the lack of emitted radiation becomes reconcilable with the concepts of dark energy and dark matter. Second, the crucial coincidence problem of equal orders of magnitude of mass density and vacuum energy density cannot be explained by the cosmological constant, but is resolved by the present variable concepts, which originate from the same photon gas balance. Third, the present approach becomes reconcilable with cosmical dimensions and with the radius of the observable universe. Fourth, the deduced acceleration of the expansion agrees with the observed one. In addition, mass polarity of a generalized gravitation law for matter and antimatter is proposed as a source of dark flow.

2019 ◽  
Vol 28 (14) ◽  
pp. 1944002 ◽  
Author(s):  
Spyros Basilakos ◽  
Nick E. Mavromatos ◽  
Joan Solà Peracaula

We present a string-based picture of the cosmological evolution in which (CP-violating) gravitational anomalies acting during the inflationary phase of the universe cause the vacuum energy density to “run” with the effective Hubble parameter squared, [Formula: see text], thanks to the axion field of the bosonic string multiplet. This leads to baryogenesis through leptogenesis with massive right-handed neutrinos. The generation of chiral matter after inflation helps in cancelling the anomalies in the observable radiation- and matter-dominated eras. The present era inherits the same “running vacuum” structure triggered during the inflationary time by the axion field. The current dark energy is thus predicted to be mildly dynamical, and dark matter should be made of axions. Paraphrasing Carl Sagan [ https://www.goodreads.com/author/quotes/10538.Carl_Sagan .]: we are all anomalously made from starstuff.


Author(s):  
Biswaranjan Dikshit

In this paper, by taking the structure of universe to be a 3-sphere and assuming that the zero-point oscillator for all particles is same, we derive an analytical expression for  vacuum (or dark) energy density and eliminate the discrepancy of ~10123 between quantum mechanical prediction and astronomical observation. Thus, we solve the cosmological constant problem. Then, using the analytical expression of the dark energy, we derive the expression for non-vacuum contribution to energy density (ordinary/dark matter, radiation) and show that ratio between non-vacuum to vacuum energy is ~1/2, thus solving the cosmic coincidence problem which questions why the matter energy density is of the same order as the vacuum energy density. Finally, using the above expressions for energy density, observed flatness of space is explained, Hubble’s constant is proved to be exactly equal to the reciprocal of the age of universe and size of universe is estimated. The calculated age and radius of universe comes out to be ~14.4 billion years and ~50 billion light years respectively which match well with the astronomically observed data.


2006 ◽  
Vol 15 (12) ◽  
pp. 1987-2010 ◽  
Author(s):  
G. E. VOLOVIK

We discuss the main myths related to the vacuum energy and cosmological constant, such as: "unbearable lightness of space–time"; the dominating contribution of zero-point energy of quantum fields to the vacuum energy; non-zero vacuum energy of the false vacuum; dependence of the vacuum energy on the overall shift of energy; the absolute value of energy only has significance for gravity; the vacuum energy depends on the vacuum content; cosmological constant changes after the phase transition; zero-point energy of the vacuum between the plates in Casimir effect must gravitate, that is why the zero-point energy in the vacuum outside the plates must also gravitate; etc. All these and some other conjectures appear to be wrong when one considers the thermodynamics of the ground state of the quantum many-body system, which mimics macroscopic thermodynamics of quantum vacuum. In particular, in spite of the ultraviolet divergence of the zero-point energy, the natural value of the vacuum energy is comparable with the observed dark energy. That is why the vacuum energy is the plausible candidate for the dark energy.


2020 ◽  
Vol 35 (02n03) ◽  
pp. 2040039
Author(s):  
Claudio Parmeggiani

We discuss a proposal for a somewhat new formulation of quantum field theory (set in a four-dimensional manifold, the space-time) that includes an analysis of its implications for the evolution of Einstein-Friedmann cosmological models. The proposed theory displays two peculiar features: (i) a local Hilbert-Fock space is associated with each space-time point: we are dealing with a vector bundle whose fibers are Hilbert spaces; the operator-valued sections of the bundle are the quantum fields; (ii) the vacuum energy density is finite, being regularized in a space-time curvature dependent way, independently at each point. In fact everything is finite: self-masses, self-charges, quantum fluctuations: they depend on the space-time curvature and diverge only for a flat metric. In an Einstein-Friedmann model the vacuum (zero-point) energy density is consequently time-dependent and in general not negligible. Then it is shown that, for some choices of the parameters of the theory, the big-bang singularity is resolved and replaced by a bounce driven by the vacuum energy density, which becomes (very) large and negative near the bounce (negative by the contribution of the Fermi fields). But for large times (now, say) the Bose fields’ positive vacuum energy eventually overcomes the negative one and we are finally left with the present vacuum energy: positive and reasonably small.


2021 ◽  
Vol 67 (4 Jul-Aug) ◽  
Author(s):  
Davide Fiscaletti

A nonlinear model of Brownian motion is developed in a three-dimensional quantum vacuum defined by a variable quantum vacuum energy density corresponding to processes of creation/annihilation of virtual particles. In this model, the polarization of the quantum vacuum determined by a perturbative fluctuation of the quantum vacuum energy density associated with a fluctuating viscosity, which mimics the action of dark matter, emerges as the fundamental entity which generates the Brownian motion.


2012 ◽  
Vol 27 (11) ◽  
pp. 1250063 ◽  
Author(s):  
C. FROGGATT ◽  
R. NEVZOROV ◽  
H. B. NIELSEN

In N = 1 supergravity supersymmetric and nonsupersymmetric Minkowski vacua originating in the hidden sector can be degenerate. In the supersymmetric phase in flat Minkowski space, nonperturbative supersymmetry breakdown may take place in the observable sector, inducing a nonzero and positive vacuum energy density. Assuming that such a supersymmetric phase and the phase in which we live are degenerate, we estimate the value of the cosmological constant. We argue that the observed value of the dark energy density can be reproduced in the split SUSY scenario of SUSY breaking if the SUSY breaking scale is of order of 1010 GeV.


2006 ◽  
Vol 636 (2) ◽  
pp. 80-85 ◽  
Author(s):  
B. Guberina ◽  
R. Horvat ◽  
H. Nikolić

2009 ◽  
Vol 24 (16) ◽  
pp. 1257-1266
Author(s):  
J. J. ROSALES ◽  
V. I. TKACH

Using the superfield approach we construct the n = 2 supersymmetric Lagrangian for the FRW Universe with barotropic perfect fluid as matter field. The obtained supersymmetric algebra allowed us to take the square root of the Wheeler–DeWitt equation and solve the corresponding quantum constraint. This model leads to the relation between the vacuum energy density and the energy density of the dust matter.


Sign in / Sign up

Export Citation Format

Share Document